This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prter1 , prter2 , prter3 and prtex . (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prtlem13.1 | |- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
| Assertion | prtlem13 | |- ( z .~ w <-> E. v e. A ( z e. v /\ w e. v ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem13.1 | |- .~ = { <. x , y >. | E. u e. A ( x e. u /\ y e. u ) } |
|
| 2 | vex | |- z e. _V |
|
| 3 | vex | |- w e. _V |
|
| 4 | elequ2 | |- ( u = v -> ( x e. u <-> x e. v ) ) |
|
| 5 | elequ2 | |- ( u = v -> ( y e. u <-> y e. v ) ) |
|
| 6 | 4 5 | anbi12d | |- ( u = v -> ( ( x e. u /\ y e. u ) <-> ( x e. v /\ y e. v ) ) ) |
| 7 | 6 | cbvrexvw | |- ( E. u e. A ( x e. u /\ y e. u ) <-> E. v e. A ( x e. v /\ y e. v ) ) |
| 8 | elequ1 | |- ( x = z -> ( x e. v <-> z e. v ) ) |
|
| 9 | elequ1 | |- ( y = w -> ( y e. v <-> w e. v ) ) |
|
| 10 | 8 9 | bi2anan9 | |- ( ( x = z /\ y = w ) -> ( ( x e. v /\ y e. v ) <-> ( z e. v /\ w e. v ) ) ) |
| 11 | 10 | rexbidv | |- ( ( x = z /\ y = w ) -> ( E. v e. A ( x e. v /\ y e. v ) <-> E. v e. A ( z e. v /\ w e. v ) ) ) |
| 12 | 7 11 | bitrid | |- ( ( x = z /\ y = w ) -> ( E. u e. A ( x e. u /\ y e. u ) <-> E. v e. A ( z e. v /\ w e. v ) ) ) |
| 13 | 2 3 12 1 | braba | |- ( z .~ w <-> E. v e. A ( z e. v /\ w e. v ) ) |