This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For every partition there exists a unique equivalence relation whose quotient set equals the partition. (Contributed by Rodolfo Medina, 19-Oct-2010) (Proof shortened by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| Assertion | prter3 | ⊢ ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) → ∼ = 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prtlem18.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ 𝐴 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢 ) } | |
| 2 | errel | ⊢ ( 𝑆 Er ∪ 𝐴 → Rel 𝑆 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) → Rel 𝑆 ) |
| 4 | 1 | relopabiv | ⊢ Rel ∼ |
| 5 | 1 | prtlem13 | ⊢ ( 𝑧 ∼ 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) |
| 6 | simpll | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → 𝑆 Er ∪ 𝐴 ) | |
| 7 | simprl | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → 𝑣 ∈ 𝐴 ) | |
| 8 | ne0i | ⊢ ( 𝑧 ∈ 𝑣 → 𝑣 ≠ ∅ ) | |
| 9 | 8 | ad2antll | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → 𝑣 ≠ ∅ ) |
| 10 | eldifsn | ⊢ ( 𝑣 ∈ ( 𝐴 ∖ { ∅ } ) ↔ ( 𝑣 ∈ 𝐴 ∧ 𝑣 ≠ ∅ ) ) | |
| 11 | 7 9 10 | sylanbrc | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → 𝑣 ∈ ( 𝐴 ∖ { ∅ } ) ) |
| 12 | simplr | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) | |
| 13 | 11 12 | eleqtrrd | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → 𝑣 ∈ ( ∪ 𝐴 / 𝑆 ) ) |
| 14 | simprr | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → 𝑧 ∈ 𝑣 ) | |
| 15 | qsel | ⊢ ( ( 𝑆 Er ∪ 𝐴 ∧ 𝑣 ∈ ( ∪ 𝐴 / 𝑆 ) ∧ 𝑧 ∈ 𝑣 ) → 𝑣 = [ 𝑧 ] 𝑆 ) | |
| 16 | 6 13 14 15 | syl3anc | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → 𝑣 = [ 𝑧 ] 𝑆 ) |
| 17 | 16 | eleq2d | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → ( 𝑤 ∈ 𝑣 ↔ 𝑤 ∈ [ 𝑧 ] 𝑆 ) ) |
| 18 | vex | ⊢ 𝑤 ∈ V | |
| 19 | vex | ⊢ 𝑧 ∈ V | |
| 20 | 18 19 | elec | ⊢ ( 𝑤 ∈ [ 𝑧 ] 𝑆 ↔ 𝑧 𝑆 𝑤 ) |
| 21 | 17 20 | bitrdi | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣 ) ) → ( 𝑤 ∈ 𝑣 ↔ 𝑧 𝑆 𝑤 ) ) |
| 22 | 21 | anassrs | ⊢ ( ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ 𝑣 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑣 ) → ( 𝑤 ∈ 𝑣 ↔ 𝑧 𝑆 𝑤 ) ) |
| 23 | 22 | pm5.32da | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ 𝑣 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑣 ∧ 𝑧 𝑆 𝑤 ) ) ) |
| 24 | 23 | rexbidva | ⊢ ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) → ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑧 𝑆 𝑤 ) ) ) |
| 25 | simpll | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ 𝑧 𝑆 𝑤 ) → 𝑆 Er ∪ 𝐴 ) | |
| 26 | simpr | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ 𝑧 𝑆 𝑤 ) → 𝑧 𝑆 𝑤 ) | |
| 27 | 25 26 | ercl | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ 𝑧 𝑆 𝑤 ) → 𝑧 ∈ ∪ 𝐴 ) |
| 28 | eluni2 | ⊢ ( 𝑧 ∈ ∪ 𝐴 ↔ ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ) | |
| 29 | 27 28 | sylib | ⊢ ( ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ∧ 𝑧 𝑆 𝑤 ) → ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ) |
| 30 | 29 | ex | ⊢ ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) → ( 𝑧 𝑆 𝑤 → ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ) ) |
| 31 | 30 | pm4.71rd | ⊢ ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) → ( 𝑧 𝑆 𝑤 ↔ ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑧 𝑆 𝑤 ) ) ) |
| 32 | r19.41v | ⊢ ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑧 𝑆 𝑤 ) ↔ ( ∃ 𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 ∧ 𝑧 𝑆 𝑤 ) ) | |
| 33 | 31 32 | bitr4di | ⊢ ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) → ( 𝑧 𝑆 𝑤 ↔ ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑧 𝑆 𝑤 ) ) ) |
| 34 | 24 33 | bitr4d | ⊢ ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) → ( ∃ 𝑣 ∈ 𝐴 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ 𝑧 𝑆 𝑤 ) ) |
| 35 | 5 34 | bitrid | ⊢ ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) → ( 𝑧 ∼ 𝑤 ↔ 𝑧 𝑆 𝑤 ) ) |
| 36 | 35 | adantl | ⊢ ( ( ( Rel ∼ ∧ Rel 𝑆 ) ∧ ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ) → ( 𝑧 ∼ 𝑤 ↔ 𝑧 𝑆 𝑤 ) ) |
| 37 | 36 | eqbrrdv2 | ⊢ ( ( ( Rel ∼ ∧ Rel 𝑆 ) ∧ ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ) → ∼ = 𝑆 ) |
| 38 | 4 37 | mpanl1 | ⊢ ( ( Rel 𝑆 ∧ ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) ) → ∼ = 𝑆 ) |
| 39 | 3 38 | mpancom | ⊢ ( ( 𝑆 Er ∪ 𝐴 ∧ ( ∪ 𝐴 / 𝑆 ) = ( 𝐴 ∖ { ∅ } ) ) → ∼ = 𝑆 ) |