This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Preordered sets as categories. Similar to example 3.3(4.d) of Adamek p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs and catprs2 for inducing a preorder from a category. Example 3.26(2) of Adamek p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indthinc.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| prsthinc.h | ⊢ ( 𝜑 → ( ≤ × { 1o } ) = ( Hom ‘ 𝐶 ) ) | ||
| prsthinc.o | ⊢ ( 𝜑 → ∅ = ( comp ‘ 𝐶 ) ) | ||
| prsthinc.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | ||
| prsthinc.p | ⊢ ( 𝜑 → 𝐶 ∈ Proset ) | ||
| Assertion | prsthinc | ⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indthinc.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 2 | prsthinc.h | ⊢ ( 𝜑 → ( ≤ × { 1o } ) = ( Hom ‘ 𝐶 ) ) | |
| 3 | prsthinc.o | ⊢ ( 𝜑 → ∅ = ( comp ‘ 𝐶 ) ) | |
| 4 | prsthinc.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | |
| 5 | prsthinc.p | ⊢ ( 𝜑 → 𝐶 ∈ Proset ) | |
| 6 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ≤ × { 1o } ) = ( ≤ × { 1o } ) ) | |
| 7 | 6 | f1omo | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 8 | df-ov | ⊢ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) = ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 9 | 8 | eleq2i | ⊢ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ↔ 𝑓 ∈ ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 10 | 9 | mobii | ⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( ( ≤ × { 1o } ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
| 11 | 7 10 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ) |
| 12 | biid | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) | |
| 13 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 14 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 16 | eqid | ⊢ ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) | |
| 17 | 15 16 | prsref | ⊢ ( ( 𝐶 ∈ Proset ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ( le ‘ 𝐶 ) 𝑦 ) |
| 18 | 5 17 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ( le ‘ 𝐶 ) 𝑦 ) |
| 19 | 14 18 | sylbida | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ( le ‘ 𝐶 ) 𝑦 ) |
| 20 | 4 | breqd | ⊢ ( 𝜑 → ( 𝑦 ≤ 𝑦 ↔ 𝑦 ( le ‘ 𝐶 ) 𝑦 ) ) |
| 21 | 20 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑦 ) → 𝑦 ≤ 𝑦 ) |
| 22 | 19 21 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ≤ 𝑦 ) |
| 23 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ≤ × { 1o } ) = ( ≤ × { 1o } ) ) | |
| 24 | 1oex | ⊢ 1o ∈ V | |
| 25 | 24 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 1o ∈ V ) |
| 26 | 1n0 | ⊢ 1o ≠ ∅ | |
| 27 | 26 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 1o ≠ ∅ ) |
| 28 | 23 25 27 | fvconstr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ≤ 𝑦 ↔ ( 𝑦 ( ≤ × { 1o } ) 𝑦 ) = 1o ) ) |
| 29 | 22 28 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ( ≤ × { 1o } ) 𝑦 ) = 1o ) |
| 30 | 13 29 | eleqtrrid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∅ ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑦 ) ) |
| 31 | 0ov | ⊢ ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) = ∅ | |
| 32 | 31 | oveqi | ⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ( 𝑔 ∅ 𝑓 ) |
| 33 | 0ov | ⊢ ( 𝑔 ∅ 𝑓 ) = ∅ | |
| 34 | 32 33 | eqtri | ⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) = ∅ |
| 35 | 34 13 | eqeltri | ⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) ∈ 1o |
| 36 | simpl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝜑 ) | |
| 37 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝐶 ∈ Proset ) |
| 38 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) |
| 39 | 1 | eleq2d | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
| 40 | 38 14 39 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 41 | 40 | biimpa | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
| 42 | 41 | adantrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) |
| 43 | eqidd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( ≤ × { 1o } ) = ( ≤ × { 1o } ) ) | |
| 44 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ) | |
| 45 | 43 44 | fvconstr2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ≤ 𝑦 ) |
| 46 | 4 | breqd | ⊢ ( 𝜑 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) |
| 47 | 46 | biimpd | ⊢ ( 𝜑 → ( 𝑥 ≤ 𝑦 → 𝑥 ( le ‘ 𝐶 ) 𝑦 ) ) |
| 48 | 36 45 47 | sylc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ( le ‘ 𝐶 ) 𝑦 ) |
| 49 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) | |
| 50 | 43 49 | fvconstr2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑦 ≤ 𝑧 ) |
| 51 | 4 | breqd | ⊢ ( 𝜑 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ( le ‘ 𝐶 ) 𝑧 ) ) |
| 52 | 51 | biimpd | ⊢ ( 𝜑 → ( 𝑦 ≤ 𝑧 → 𝑦 ( le ‘ 𝐶 ) 𝑧 ) ) |
| 53 | 36 50 52 | sylc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑦 ( le ‘ 𝐶 ) 𝑧 ) |
| 54 | 15 16 | prstr | ⊢ ( ( 𝐶 ∈ Proset ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑥 ( le ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐶 ) 𝑧 ) ) → 𝑥 ( le ‘ 𝐶 ) 𝑧 ) |
| 55 | 37 42 48 53 54 | syl112anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ( le ‘ 𝐶 ) 𝑧 ) |
| 56 | 4 | breqd | ⊢ ( 𝜑 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ( le ‘ 𝐶 ) 𝑧 ) ) |
| 57 | 56 | biimprd | ⊢ ( 𝜑 → ( 𝑥 ( le ‘ 𝐶 ) 𝑧 → 𝑥 ≤ 𝑧 ) ) |
| 58 | 36 55 57 | sylc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 𝑥 ≤ 𝑧 ) |
| 59 | 24 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 1o ∈ V ) |
| 60 | 26 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → 1o ≠ ∅ ) |
| 61 | 43 59 60 | fvconstr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑥 ≤ 𝑧 ↔ ( 𝑥 ( ≤ × { 1o } ) 𝑧 ) = 1o ) ) |
| 62 | 58 61 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑥 ( ≤ × { 1o } ) 𝑧 ) = 1o ) |
| 63 | 35 62 | eleqtrrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( ≤ × { 1o } ) 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∅ 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( ≤ × { 1o } ) 𝑧 ) ) |
| 64 | 1 2 11 3 5 12 30 63 | isthincd2 | ⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ ∅ ) ) ) |