This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Preordered sets as categories. Similar to example 3.3(4.d) of Adamek p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs and catprs2 for inducing a preorder from a category. Example 3.26(2) of Adamek p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indthinc.b | |- ( ph -> B = ( Base ` C ) ) |
|
| prsthinc.h | |- ( ph -> ( .<_ X. { 1o } ) = ( Hom ` C ) ) |
||
| prsthinc.o | |- ( ph -> (/) = ( comp ` C ) ) |
||
| prsthinc.l | |- ( ph -> .<_ = ( le ` C ) ) |
||
| prsthinc.p | |- ( ph -> C e. Proset ) |
||
| Assertion | prsthinc | |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indthinc.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 2 | prsthinc.h | |- ( ph -> ( .<_ X. { 1o } ) = ( Hom ` C ) ) |
|
| 3 | prsthinc.o | |- ( ph -> (/) = ( comp ` C ) ) |
|
| 4 | prsthinc.l | |- ( ph -> .<_ = ( le ` C ) ) |
|
| 5 | prsthinc.p | |- ( ph -> C e. Proset ) |
|
| 6 | eqidd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( .<_ X. { 1o } ) = ( .<_ X. { 1o } ) ) |
|
| 7 | 6 | f1omo | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* f f e. ( ( .<_ X. { 1o } ) ` <. x , y >. ) ) |
| 8 | df-ov | |- ( x ( .<_ X. { 1o } ) y ) = ( ( .<_ X. { 1o } ) ` <. x , y >. ) |
|
| 9 | 8 | eleq2i | |- ( f e. ( x ( .<_ X. { 1o } ) y ) <-> f e. ( ( .<_ X. { 1o } ) ` <. x , y >. ) ) |
| 10 | 9 | mobii | |- ( E* f f e. ( x ( .<_ X. { 1o } ) y ) <-> E* f f e. ( ( .<_ X. { 1o } ) ` <. x , y >. ) ) |
| 11 | 7 10 | sylibr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* f f e. ( x ( .<_ X. { 1o } ) y ) ) |
| 12 | biid | |- ( ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) <-> ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) |
|
| 13 | 0lt1o | |- (/) e. 1o |
|
| 14 | 1 | eleq2d | |- ( ph -> ( y e. B <-> y e. ( Base ` C ) ) ) |
| 15 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 16 | eqid | |- ( le ` C ) = ( le ` C ) |
|
| 17 | 15 16 | prsref | |- ( ( C e. Proset /\ y e. ( Base ` C ) ) -> y ( le ` C ) y ) |
| 18 | 5 17 | sylan | |- ( ( ph /\ y e. ( Base ` C ) ) -> y ( le ` C ) y ) |
| 19 | 14 18 | sylbida | |- ( ( ph /\ y e. B ) -> y ( le ` C ) y ) |
| 20 | 4 | breqd | |- ( ph -> ( y .<_ y <-> y ( le ` C ) y ) ) |
| 21 | 20 | biimpar | |- ( ( ph /\ y ( le ` C ) y ) -> y .<_ y ) |
| 22 | 19 21 | syldan | |- ( ( ph /\ y e. B ) -> y .<_ y ) |
| 23 | eqidd | |- ( ( ph /\ y e. B ) -> ( .<_ X. { 1o } ) = ( .<_ X. { 1o } ) ) |
|
| 24 | 1oex | |- 1o e. _V |
|
| 25 | 24 | a1i | |- ( ( ph /\ y e. B ) -> 1o e. _V ) |
| 26 | 1n0 | |- 1o =/= (/) |
|
| 27 | 26 | a1i | |- ( ( ph /\ y e. B ) -> 1o =/= (/) ) |
| 28 | 23 25 27 | fvconstr | |- ( ( ph /\ y e. B ) -> ( y .<_ y <-> ( y ( .<_ X. { 1o } ) y ) = 1o ) ) |
| 29 | 22 28 | mpbid | |- ( ( ph /\ y e. B ) -> ( y ( .<_ X. { 1o } ) y ) = 1o ) |
| 30 | 13 29 | eleqtrrid | |- ( ( ph /\ y e. B ) -> (/) e. ( y ( .<_ X. { 1o } ) y ) ) |
| 31 | 0ov | |- ( <. x , y >. (/) z ) = (/) |
|
| 32 | 31 | oveqi | |- ( g ( <. x , y >. (/) z ) f ) = ( g (/) f ) |
| 33 | 0ov | |- ( g (/) f ) = (/) |
|
| 34 | 32 33 | eqtri | |- ( g ( <. x , y >. (/) z ) f ) = (/) |
| 35 | 34 13 | eqeltri | |- ( g ( <. x , y >. (/) z ) f ) e. 1o |
| 36 | simpl | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> ph ) |
|
| 37 | 5 | adantr | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> C e. Proset ) |
| 38 | 1 | eleq2d | |- ( ph -> ( x e. B <-> x e. ( Base ` C ) ) ) |
| 39 | 1 | eleq2d | |- ( ph -> ( z e. B <-> z e. ( Base ` C ) ) ) |
| 40 | 38 14 39 | 3anbi123d | |- ( ph -> ( ( x e. B /\ y e. B /\ z e. B ) <-> ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) ) |
| 41 | 40 | biimpa | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) |
| 42 | 41 | adantrr | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) ) |
| 43 | eqidd | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> ( .<_ X. { 1o } ) = ( .<_ X. { 1o } ) ) |
|
| 44 | simprrl | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> f e. ( x ( .<_ X. { 1o } ) y ) ) |
|
| 45 | 43 44 | fvconstr2 | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> x .<_ y ) |
| 46 | 4 | breqd | |- ( ph -> ( x .<_ y <-> x ( le ` C ) y ) ) |
| 47 | 46 | biimpd | |- ( ph -> ( x .<_ y -> x ( le ` C ) y ) ) |
| 48 | 36 45 47 | sylc | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> x ( le ` C ) y ) |
| 49 | simprrr | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> g e. ( y ( .<_ X. { 1o } ) z ) ) |
|
| 50 | 43 49 | fvconstr2 | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> y .<_ z ) |
| 51 | 4 | breqd | |- ( ph -> ( y .<_ z <-> y ( le ` C ) z ) ) |
| 52 | 51 | biimpd | |- ( ph -> ( y .<_ z -> y ( le ` C ) z ) ) |
| 53 | 36 50 52 | sylc | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> y ( le ` C ) z ) |
| 54 | 15 16 | prstr | |- ( ( C e. Proset /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ z e. ( Base ` C ) ) /\ ( x ( le ` C ) y /\ y ( le ` C ) z ) ) -> x ( le ` C ) z ) |
| 55 | 37 42 48 53 54 | syl112anc | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> x ( le ` C ) z ) |
| 56 | 4 | breqd | |- ( ph -> ( x .<_ z <-> x ( le ` C ) z ) ) |
| 57 | 56 | biimprd | |- ( ph -> ( x ( le ` C ) z -> x .<_ z ) ) |
| 58 | 36 55 57 | sylc | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> x .<_ z ) |
| 59 | 24 | a1i | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> 1o e. _V ) |
| 60 | 26 | a1i | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> 1o =/= (/) ) |
| 61 | 43 59 60 | fvconstr | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> ( x .<_ z <-> ( x ( .<_ X. { 1o } ) z ) = 1o ) ) |
| 62 | 58 61 | mpbid | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> ( x ( .<_ X. { 1o } ) z ) = 1o ) |
| 63 | 35 62 | eleqtrrid | |- ( ( ph /\ ( ( x e. B /\ y e. B /\ z e. B ) /\ ( f e. ( x ( .<_ X. { 1o } ) y ) /\ g e. ( y ( .<_ X. { 1o } ) z ) ) ) ) -> ( g ( <. x , y >. (/) z ) f ) e. ( x ( .<_ X. { 1o } ) z ) ) |
| 64 | 1 2 11 3 5 12 30 63 | isthincd2 | |- ( ph -> ( C e. ThinCat /\ ( Id ` C ) = ( y e. B |-> (/) ) ) ) |