This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A category equipped with the induced preorder, where an object x is defined to be "less than or equal to" y iff there is a morphism from x to y , is a preordered set, or a proset. The category might not be thin. See catprsc and catprsc2 for constructions satisfying the hypothesis "catprs.1". See catprs for a more primitive version. See prsthinc for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catprs.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ) | |
| catprs.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
| catprs.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
| catprs.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| catprs2.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | ||
| Assertion | catprs2 | ⊢ ( 𝜑 → 𝐶 ∈ Proset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprs.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ) | |
| 2 | catprs.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 3 | catprs.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
| 4 | catprs.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | catprs2.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐶 ) ) | |
| 6 | 1 2 3 4 | catprs | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → ( 𝑤 ≤ 𝑤 ∧ ( ( 𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢 ) → 𝑤 ≤ 𝑢 ) ) ) |
| 7 | 6 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ( 𝑤 ≤ 𝑤 ∧ ( ( 𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢 ) → 𝑤 ≤ 𝑢 ) ) ) |
| 8 | 2 5 4 | isprsd | ⊢ ( 𝜑 → ( 𝐶 ∈ Proset ↔ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ( 𝑤 ≤ 𝑤 ∧ ( ( 𝑤 ≤ 𝑣 ∧ 𝑣 ≤ 𝑢 ) → 𝑤 ≤ 𝑢 ) ) ) ) |
| 9 | 7 8 | mpbird | ⊢ ( 𝜑 → 𝐶 ∈ Proset ) |