This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setcthin.c | ⊢ ( 𝜑 → 𝐶 = ( SetCat ‘ 𝑈 ) ) | |
| setcthin.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| setcthin.x | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ∃* 𝑝 𝑝 ∈ 𝑥 ) | ||
| Assertion | setcthin | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcthin.c | ⊢ ( 𝜑 → 𝐶 = ( SetCat ‘ 𝑈 ) ) | |
| 2 | setcthin.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 3 | setcthin.x | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑈 ∃* 𝑝 𝑝 ∈ 𝑥 ) | |
| 4 | eqid | ⊢ ( SetCat ‘ 𝑈 ) = ( SetCat ‘ 𝑈 ) | |
| 5 | 4 2 | setcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( SetCat ‘ 𝑈 ) ) ) |
| 6 | eqidd | ⊢ ( 𝜑 → ( Hom ‘ ( SetCat ‘ 𝑈 ) ) = ( Hom ‘ ( SetCat ‘ 𝑈 ) ) ) | |
| 7 | elequ2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑝 ∈ 𝑥 ↔ 𝑝 ∈ 𝑧 ) ) | |
| 8 | 7 | mobidv | ⊢ ( 𝑥 = 𝑧 → ( ∃* 𝑝 𝑝 ∈ 𝑥 ↔ ∃* 𝑝 𝑝 ∈ 𝑧 ) ) |
| 9 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∀ 𝑥 ∈ 𝑈 ∃* 𝑝 𝑝 ∈ 𝑥 ) |
| 10 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) | |
| 11 | 8 9 10 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∃* 𝑝 𝑝 ∈ 𝑧 ) |
| 12 | mofmo | ⊢ ( ∃* 𝑝 𝑝 ∈ 𝑧 → ∃* 𝑓 𝑓 : 𝑦 ⟶ 𝑧 ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∃* 𝑓 𝑓 : 𝑦 ⟶ 𝑧 ) |
| 14 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑉 ) |
| 15 | eqid | ⊢ ( Hom ‘ ( SetCat ‘ 𝑈 ) ) = ( Hom ‘ ( SetCat ‘ 𝑈 ) ) | |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) | |
| 17 | 4 14 15 16 10 | elsetchom | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑓 ∈ ( 𝑦 ( Hom ‘ ( SetCat ‘ 𝑈 ) ) 𝑧 ) ↔ 𝑓 : 𝑦 ⟶ 𝑧 ) ) |
| 18 | 17 | mobidv | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ( ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ ( SetCat ‘ 𝑈 ) ) 𝑧 ) ↔ ∃* 𝑓 𝑓 : 𝑦 ⟶ 𝑧 ) ) |
| 19 | 13 18 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑈 ∧ 𝑧 ∈ 𝑈 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ ( SetCat ‘ 𝑈 ) ) 𝑧 ) ) |
| 20 | 4 | setccat | ⊢ ( 𝑈 ∈ 𝑉 → ( SetCat ‘ 𝑈 ) ∈ Cat ) |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → ( SetCat ‘ 𝑈 ) ∈ Cat ) |
| 22 | 5 6 19 21 | isthincd | ⊢ ( 𝜑 → ( SetCat ‘ 𝑈 ) ∈ ThinCat ) |
| 23 | 1 22 | eqeltrd | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |