This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing A R B . (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvconstr.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑅 × { 𝑌 } ) ) | |
| fvconstr2.2 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 𝐹 𝐵 ) ) | ||
| Assertion | fvconstr2 | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvconstr.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝑅 × { 𝑌 } ) ) | |
| 2 | fvconstr2.2 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 𝐹 𝐵 ) ) | |
| 3 | 2 | ne0d | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ≠ ∅ ) |
| 4 | 1 | oveqd | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = ( 𝐴 ( 𝑅 × { 𝑌 } ) 𝐵 ) ) |
| 5 | df-ov | ⊢ ( 𝐴 ( 𝑅 × { 𝑌 } ) 𝐵 ) = ( ( 𝑅 × { 𝑌 } ) ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) = ( ( 𝑅 × { 𝑌 } ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 7 | 6 | neeq1d | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) ≠ ∅ ↔ ( ( 𝑅 × { 𝑌 } ) ‘ 〈 𝐴 , 𝐵 〉 ) ≠ ∅ ) ) |
| 8 | dmxpss | ⊢ dom ( 𝑅 × { 𝑌 } ) ⊆ 𝑅 | |
| 9 | ndmfv | ⊢ ( ¬ 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑅 × { 𝑌 } ) → ( ( 𝑅 × { 𝑌 } ) ‘ 〈 𝐴 , 𝐵 〉 ) = ∅ ) | |
| 10 | 9 | necon1ai | ⊢ ( ( ( 𝑅 × { 𝑌 } ) ‘ 〈 𝐴 , 𝐵 〉 ) ≠ ∅ → 〈 𝐴 , 𝐵 〉 ∈ dom ( 𝑅 × { 𝑌 } ) ) |
| 11 | 8 10 | sselid | ⊢ ( ( ( 𝑅 × { 𝑌 } ) ‘ 〈 𝐴 , 𝐵 〉 ) ≠ ∅ → 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) |
| 12 | 7 11 | biimtrdi | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) ≠ ∅ → 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) ) |
| 13 | 3 12 | mpd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) |
| 14 | df-br | ⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) | |
| 15 | 13 14 | sylibr | ⊢ ( 𝜑 → 𝐴 𝑅 𝐵 ) |