This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A preorder can be extracted from a category. See catprs2 for more details. (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catprs.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ) | |
| catprs.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
| catprs.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
| catprs.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| Assertion | catprs | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprs.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ) | |
| 2 | catprs.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 3 | catprs.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
| 4 | catprs.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐶 ∈ Cat ) |
| 9 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 11 | 9 10 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 12 | 5 6 7 8 11 | catidcl | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 13 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐻 = ( Hom ‘ 𝐶 ) ) |
| 14 | 13 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐻 𝑋 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 15 | 12 14 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
| 16 | 15 | ne0d | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐻 𝑋 ) ≠ ∅ ) |
| 17 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ) |
| 18 | 17 9 9 | catprslem | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ↔ ( 𝑋 𝐻 𝑋 ) ≠ ∅ ) ) |
| 19 | 16 18 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ≤ 𝑋 ) |
| 20 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝐻 = ( Hom ‘ 𝐶 ) ) |
| 21 | 20 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 𝐻 𝑍 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 22 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) |
| 23 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐵 ↔ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 24 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑍 ∈ 𝐵 ↔ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) |
| 25 | 22 23 24 | 3anbi123d | ⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ↔ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 26 | 25 | pm5.32i | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ↔ ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 27 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 28 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝐶 ∈ Cat ) |
| 29 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) | |
| 30 | simplr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) | |
| 31 | simplr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) | |
| 32 | 20 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 33 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 34 | 17 9 33 | catprslem | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) |
| 35 | 34 | biimpa | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) |
| 36 | 35 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) |
| 37 | 32 36 | eqnetrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ≠ ∅ ) |
| 38 | 26 37 | sylanbr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ≠ ∅ ) |
| 39 | 20 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑌 𝐻 𝑍 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 40 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 41 | 17 33 40 | catprslem | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ≤ 𝑍 ↔ ( 𝑌 𝐻 𝑍 ) ≠ ∅ ) ) |
| 42 | 41 | biimpa | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑌 ≤ 𝑍 ) → ( 𝑌 𝐻 𝑍 ) ≠ ∅ ) |
| 43 | 42 | adantrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑌 𝐻 𝑍 ) ≠ ∅ ) |
| 44 | 39 43 | eqnetrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ≠ ∅ ) |
| 45 | 26 44 | sylanbr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ≠ ∅ ) |
| 46 | 5 6 27 28 29 30 31 38 45 | catcone0 | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ≠ ∅ ) |
| 47 | 26 46 | sylanb | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ≠ ∅ ) |
| 48 | 21 47 | eqnetrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 𝐻 𝑍 ) ≠ ∅ ) |
| 49 | 17 9 40 | catprslem | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑍 ↔ ( 𝑋 𝐻 𝑍 ) ≠ ∅ ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 ≤ 𝑍 ↔ ( 𝑋 𝐻 𝑍 ) ≠ ∅ ) ) |
| 51 | 48 50 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝑋 ≤ 𝑍 ) |
| 52 | 51 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |
| 53 | 19 52 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) ) |