This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is at most one element in the function value of a constant function whose output is 1o . (An artifact of our function value definition.) Proof could be significantly shortened by fvconstdomi assuming ax-un (see f1omoALT ). (Contributed by Zhi Wang, 19-Sep-2024) (Proof shortened by SN, 24-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1omo.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝐴 × { 1o } ) ) | |
| Assertion | f1omo | ⊢ ( 𝜑 → ∃* 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1omo.1 | ⊢ ( 𝜑 → 𝐹 = ( 𝐴 × { 1o } ) ) | |
| 2 | 1oex | ⊢ 1o ∈ V | |
| 3 | eqid | ⊢ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) | |
| 4 | 2 3 | fvconst0ci | ⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o ) |
| 5 | mo0 | ⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) | |
| 6 | df1o2 | ⊢ 1o = { ∅ } | |
| 7 | 6 | eqeq2i | ⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o ↔ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = { ∅ } ) |
| 8 | mosn | ⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = { ∅ } → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) | |
| 9 | 7 8 | sylbi | ⊢ ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
| 10 | 5 9 | jaoi | ⊢ ( ( ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = ∅ ∨ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) = 1o ) → ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
| 11 | 4 10 | ax-mp | ⊢ ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) |
| 12 | 1 | fveq1d | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) |
| 13 | 12 | eleq2d | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ↔ 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) ) |
| 14 | 13 | mobidv | ⊢ ( 𝜑 → ( ∃* 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ↔ ∃* 𝑦 𝑦 ∈ ( ( 𝐴 × { 1o } ) ‘ 𝑋 ) ) ) |
| 15 | 11 14 | mpbiri | ⊢ ( 𝜑 → ∃* 𝑦 𝑦 ∈ ( 𝐹 ‘ 𝑋 ) ) |