This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring unity in a structure family product. (Contributed by Mario Carneiro, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prds1.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| prds1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| prds1.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | ||
| prds1.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Ring ) | ||
| Assertion | prds1 | ⊢ ( 𝜑 → ( 1r ∘ 𝑅 ) = ( 1r ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prds1.y | ⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) | |
| 2 | prds1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 3 | prds1.s | ⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) | |
| 4 | prds1.r | ⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Ring ) | |
| 5 | eqid | ⊢ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) = ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) | |
| 6 | mgpf | ⊢ ( mulGrp ↾ Ring ) : Ring ⟶ Mnd | |
| 7 | fco2 | ⊢ ( ( ( mulGrp ↾ Ring ) : Ring ⟶ Mnd ∧ 𝑅 : 𝐼 ⟶ Ring ) → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Mnd ) | |
| 8 | 6 4 7 | sylancr | ⊢ ( 𝜑 → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ Mnd ) |
| 9 | 5 2 3 8 | prds0g | ⊢ ( 𝜑 → ( 0g ∘ ( mulGrp ∘ 𝑅 ) ) = ( 0g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
| 10 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | |
| 11 | eqid | ⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) | |
| 12 | 4 | ffnd | ⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 13 | 1 11 5 2 3 12 | prdsmgp | ⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) ) |
| 14 | 13 | simpld | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
| 15 | 13 | simprd | ⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
| 16 | 15 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) 𝑦 ) ) |
| 17 | 10 14 16 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) = ( 0g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
| 18 | 9 17 | eqtr4d | ⊢ ( 𝜑 → ( 0g ∘ ( mulGrp ∘ 𝑅 ) ) = ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) ) |
| 19 | df-ur | ⊢ 1r = ( 0g ∘ mulGrp ) | |
| 20 | 19 | coeq1i | ⊢ ( 1r ∘ 𝑅 ) = ( ( 0g ∘ mulGrp ) ∘ 𝑅 ) |
| 21 | coass | ⊢ ( ( 0g ∘ mulGrp ) ∘ 𝑅 ) = ( 0g ∘ ( mulGrp ∘ 𝑅 ) ) | |
| 22 | 20 21 | eqtri | ⊢ ( 1r ∘ 𝑅 ) = ( 0g ∘ ( mulGrp ∘ 𝑅 ) ) |
| 23 | eqid | ⊢ ( 1r ‘ 𝑌 ) = ( 1r ‘ 𝑌 ) | |
| 24 | 11 23 | ringidval | ⊢ ( 1r ‘ 𝑌 ) = ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) |
| 25 | 18 22 24 | 3eqtr4g | ⊢ ( 𝜑 → ( 1r ∘ 𝑅 ) = ( 1r ‘ 𝑌 ) ) |