This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring unity in a structure family product. (Contributed by Mario Carneiro, 11-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prds1.y | |- Y = ( S Xs_ R ) |
|
| prds1.i | |- ( ph -> I e. W ) |
||
| prds1.s | |- ( ph -> S e. V ) |
||
| prds1.r | |- ( ph -> R : I --> Ring ) |
||
| Assertion | prds1 | |- ( ph -> ( 1r o. R ) = ( 1r ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prds1.y | |- Y = ( S Xs_ R ) |
|
| 2 | prds1.i | |- ( ph -> I e. W ) |
|
| 3 | prds1.s | |- ( ph -> S e. V ) |
|
| 4 | prds1.r | |- ( ph -> R : I --> Ring ) |
|
| 5 | eqid | |- ( S Xs_ ( mulGrp o. R ) ) = ( S Xs_ ( mulGrp o. R ) ) |
|
| 6 | mgpf | |- ( mulGrp |` Ring ) : Ring --> Mnd |
|
| 7 | fco2 | |- ( ( ( mulGrp |` Ring ) : Ring --> Mnd /\ R : I --> Ring ) -> ( mulGrp o. R ) : I --> Mnd ) |
|
| 8 | 6 4 7 | sylancr | |- ( ph -> ( mulGrp o. R ) : I --> Mnd ) |
| 9 | 5 2 3 8 | prds0g | |- ( ph -> ( 0g o. ( mulGrp o. R ) ) = ( 0g ` ( S Xs_ ( mulGrp o. R ) ) ) ) |
| 10 | eqidd | |- ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) ) |
|
| 11 | eqid | |- ( mulGrp ` Y ) = ( mulGrp ` Y ) |
|
| 12 | 4 | ffnd | |- ( ph -> R Fn I ) |
| 13 | 1 11 5 2 3 12 | prdsmgp | |- ( ph -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( S Xs_ ( mulGrp o. R ) ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( S Xs_ ( mulGrp o. R ) ) ) ) ) |
| 14 | 13 | simpld | |- ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( S Xs_ ( mulGrp o. R ) ) ) ) |
| 15 | 13 | simprd | |- ( ph -> ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( S Xs_ ( mulGrp o. R ) ) ) ) |
| 16 | 15 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` ( mulGrp ` Y ) ) /\ y e. ( Base ` ( mulGrp ` Y ) ) ) ) -> ( x ( +g ` ( mulGrp ` Y ) ) y ) = ( x ( +g ` ( S Xs_ ( mulGrp o. R ) ) ) y ) ) |
| 17 | 10 14 16 | grpidpropd | |- ( ph -> ( 0g ` ( mulGrp ` Y ) ) = ( 0g ` ( S Xs_ ( mulGrp o. R ) ) ) ) |
| 18 | 9 17 | eqtr4d | |- ( ph -> ( 0g o. ( mulGrp o. R ) ) = ( 0g ` ( mulGrp ` Y ) ) ) |
| 19 | df-ur | |- 1r = ( 0g o. mulGrp ) |
|
| 20 | 19 | coeq1i | |- ( 1r o. R ) = ( ( 0g o. mulGrp ) o. R ) |
| 21 | coass | |- ( ( 0g o. mulGrp ) o. R ) = ( 0g o. ( mulGrp o. R ) ) |
|
| 22 | 20 21 | eqtri | |- ( 1r o. R ) = ( 0g o. ( mulGrp o. R ) ) |
| 23 | eqid | |- ( 1r ` Y ) = ( 1r ` Y ) |
|
| 24 | 11 23 | ringidval | |- ( 1r ` Y ) = ( 0g ` ( mulGrp ` Y ) ) |
| 25 | 18 22 24 | 3eqtr4g | |- ( ph -> ( 1r o. R ) = ( 1r ` Y ) ) |