This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The particular point topology is generated by a basis consisting of pairs { x , P } for each x e. A . (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pptbas | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } = ( topGen ‘ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ppttop | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) | |
| 2 | topontop | ⊢ ( { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) → { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∈ Top ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∈ Top ) |
| 4 | eleq2 | ⊢ ( 𝑦 = { 𝑥 , 𝑃 } → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ { 𝑥 , 𝑃 } ) ) | |
| 5 | eqeq1 | ⊢ ( 𝑦 = { 𝑥 , 𝑃 } → ( 𝑦 = ∅ ↔ { 𝑥 , 𝑃 } = ∅ ) ) | |
| 6 | 4 5 | orbi12d | ⊢ ( 𝑦 = { 𝑥 , 𝑃 } → ( ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ↔ ( 𝑃 ∈ { 𝑥 , 𝑃 } ∨ { 𝑥 , 𝑃 } = ∅ ) ) ) |
| 7 | simpr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 8 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) | |
| 9 | 7 8 | prssd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 , 𝑃 } ⊆ 𝐴 ) |
| 10 | prex | ⊢ { 𝑥 , 𝑃 } ∈ V | |
| 11 | 10 | elpw | ⊢ ( { 𝑥 , 𝑃 } ∈ 𝒫 𝐴 ↔ { 𝑥 , 𝑃 } ⊆ 𝐴 ) |
| 12 | 9 11 | sylibr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 , 𝑃 } ∈ 𝒫 𝐴 ) |
| 13 | prid2g | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ { 𝑥 , 𝑃 } ) | |
| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑃 ∈ { 𝑥 , 𝑃 } ) |
| 15 | 14 | orcd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑃 ∈ { 𝑥 , 𝑃 } ∨ { 𝑥 , 𝑃 } = ∅ ) ) |
| 16 | 6 12 15 | elrabd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 , 𝑃 } ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ) |
| 17 | 16 | fmpttd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) : 𝐴 ⟶ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ) |
| 18 | 17 | frnd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ⊆ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ) |
| 19 | eleq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑧 ) ) | |
| 20 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = ∅ ↔ 𝑧 = ∅ ) ) | |
| 21 | 19 20 | orbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ↔ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) |
| 22 | 21 | elrab | ⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) |
| 23 | elpwi | ⊢ ( 𝑧 ∈ 𝒫 𝐴 → 𝑧 ⊆ 𝐴 ) | |
| 24 | 23 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) → 𝑧 ⊆ 𝐴 ) |
| 25 | 24 | sselda | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → 𝑤 ∈ 𝐴 ) |
| 26 | prid1g | ⊢ ( 𝑤 ∈ 𝑧 → 𝑤 ∈ { 𝑤 , 𝑃 } ) | |
| 27 | 26 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → 𝑤 ∈ { 𝑤 , 𝑃 } ) |
| 28 | simpr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → 𝑤 ∈ 𝑧 ) | |
| 29 | n0i | ⊢ ( 𝑤 ∈ 𝑧 → ¬ 𝑧 = ∅ ) | |
| 30 | 29 | adantl | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → ¬ 𝑧 = ∅ ) |
| 31 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) | |
| 32 | 31 | ord | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → ( ¬ 𝑃 ∈ 𝑧 → 𝑧 = ∅ ) ) |
| 33 | 30 32 | mt3d | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → 𝑃 ∈ 𝑧 ) |
| 34 | 28 33 | prssd | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → { 𝑤 , 𝑃 } ⊆ 𝑧 ) |
| 35 | preq1 | ⊢ ( 𝑥 = 𝑤 → { 𝑥 , 𝑃 } = { 𝑤 , 𝑃 } ) | |
| 36 | 35 | eleq2d | ⊢ ( 𝑥 = 𝑤 → ( 𝑤 ∈ { 𝑥 , 𝑃 } ↔ 𝑤 ∈ { 𝑤 , 𝑃 } ) ) |
| 37 | 35 | sseq1d | ⊢ ( 𝑥 = 𝑤 → ( { 𝑥 , 𝑃 } ⊆ 𝑧 ↔ { 𝑤 , 𝑃 } ⊆ 𝑧 ) ) |
| 38 | 36 37 | anbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ↔ ( 𝑤 ∈ { 𝑤 , 𝑃 } ∧ { 𝑤 , 𝑃 } ⊆ 𝑧 ) ) ) |
| 39 | 38 | rspcev | ⊢ ( ( 𝑤 ∈ 𝐴 ∧ ( 𝑤 ∈ { 𝑤 , 𝑃 } ∧ { 𝑤 , 𝑃 } ⊆ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) |
| 40 | 25 27 34 39 | syl12anc | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) |
| 41 | 10 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 { 𝑥 , 𝑃 } ∈ V |
| 42 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) | |
| 43 | eleq2 | ⊢ ( 𝑣 = { 𝑥 , 𝑃 } → ( 𝑤 ∈ 𝑣 ↔ 𝑤 ∈ { 𝑥 , 𝑃 } ) ) | |
| 44 | sseq1 | ⊢ ( 𝑣 = { 𝑥 , 𝑃 } → ( 𝑣 ⊆ 𝑧 ↔ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) | |
| 45 | 43 44 | anbi12d | ⊢ ( 𝑣 = { 𝑥 , 𝑃 } → ( ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ↔ ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) ) |
| 46 | 42 45 | rexrnmptw | ⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑥 , 𝑃 } ∈ V → ( ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) ) |
| 47 | 41 46 | ax-mp | ⊢ ( ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) |
| 48 | 40 47 | sylibr | ⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) |
| 49 | 48 | ralrimiva | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) → ∀ 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) |
| 50 | 49 | ex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) → ∀ 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) ) |
| 51 | 22 50 | biimtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } → ∀ 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) ) |
| 52 | 51 | ralrimiv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∀ 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) |
| 53 | basgen2 | ⊢ ( ( { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∈ Top ∧ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ⊆ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∧ ∀ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∀ 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ) | |
| 54 | 3 18 52 53 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( topGen ‘ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ) |
| 55 | eleq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑥 ) ) | |
| 56 | eqeq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ∅ ↔ 𝑥 = ∅ ) ) | |
| 57 | 55 56 | orbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ↔ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) |
| 58 | 57 | cbvrabv | ⊢ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } |
| 59 | 54 58 | eqtr2di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } = ( topGen ‘ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ) ) |