This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open set in a perfectly normal space is a countable union of closed sets. (Contributed by Mario Carneiro, 26-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pnrmopn | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) → ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) 𝐴 = ∪ ran 𝑓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnrmtop | ⊢ ( 𝐽 ∈ PNrm → 𝐽 ∈ Top ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 4 | 1 3 | sylan | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 5 | pnrmcld | ⊢ ( ( 𝐽 ∈ PNrm ∧ ( ∪ 𝐽 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) → ∃ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) | |
| 6 | 4 5 | syldan | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) → ∃ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) |
| 7 | 1 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) ∧ 𝑥 ∈ ℕ ) → 𝐽 ∈ Top ) |
| 8 | elmapi | ⊢ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) → 𝑔 : ℕ ⟶ 𝐽 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → 𝑔 : ℕ ⟶ 𝐽 ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐽 ) |
| 11 | 2 | opncld | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 12 | 7 10 11 | syl2anc | ⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) ∧ 𝑥 ∈ ℕ ) → ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 13 | 12 | fmpttd | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
| 14 | fvex | ⊢ ( Clsd ‘ 𝐽 ) ∈ V | |
| 15 | nnex | ⊢ ℕ ∈ V | |
| 16 | 14 15 | elmap | ⊢ ( ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ↔ ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
| 17 | 13 16 | sylibr | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ) |
| 18 | iundif2 | ⊢ ∪ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) = ( ∪ 𝐽 ∖ ∩ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) ) | |
| 19 | ffn | ⊢ ( 𝑔 : ℕ ⟶ 𝐽 → 𝑔 Fn ℕ ) | |
| 20 | fniinfv | ⊢ ( 𝑔 Fn ℕ → ∩ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) = ∩ ran 𝑔 ) | |
| 21 | 9 19 20 | 3syl | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∩ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) = ∩ ran 𝑔 ) |
| 22 | 21 | difeq2d | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ( ∪ 𝐽 ∖ ∩ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) ) = ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) ) |
| 23 | 18 22 | eqtrid | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∪ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) = ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) ) |
| 24 | uniexg | ⊢ ( 𝐽 ∈ PNrm → ∪ 𝐽 ∈ V ) | |
| 25 | 24 | difexd | ⊢ ( 𝐽 ∈ PNrm → ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ V ) |
| 26 | 25 | ralrimivw | ⊢ ( 𝐽 ∈ PNrm → ∀ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ V ) |
| 27 | 26 | adantr | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∀ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ V ) |
| 28 | dfiun2g | ⊢ ( ∀ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ V → ∪ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ ℕ 𝑓 = ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) } ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∪ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ ℕ 𝑓 = ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) } ) |
| 30 | eqid | ⊢ ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) | |
| 31 | 30 | rnmpt | ⊢ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) = { 𝑓 ∣ ∃ 𝑥 ∈ ℕ 𝑓 = ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) } |
| 32 | 31 | unieqi | ⊢ ∪ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ ℕ 𝑓 = ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) } |
| 33 | 29 32 | eqtr4di | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∪ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) = ∪ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 34 | 23 33 | eqtr3d | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 35 | rneq | ⊢ ( 𝑓 = ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) → ran 𝑓 = ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 36 | 35 | unieqd | ⊢ ( 𝑓 = ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) → ∪ ran 𝑓 = ∪ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 37 | 36 | rspceeqv | ⊢ ( ( ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ) → ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran 𝑓 ) |
| 38 | 17 34 37 | syl2anc | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran 𝑓 ) |
| 39 | 38 | ad2ant2r | ⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) ) → ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran 𝑓 ) |
| 40 | difeq2 | ⊢ ( ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐴 ) ) = ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) ) | |
| 41 | 40 | eqcomd | ⊢ ( ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 → ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐴 ) ) ) |
| 42 | elssuni | ⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽 ) | |
| 43 | dfss4 | ⊢ ( 𝐴 ⊆ ∪ 𝐽 ↔ ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐴 ) ) = 𝐴 ) | |
| 44 | 42 43 | sylib | ⊢ ( 𝐴 ∈ 𝐽 → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐴 ) ) = 𝐴 ) |
| 45 | 41 44 | sylan9eqr | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) → ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = 𝐴 ) |
| 46 | 45 | ad2ant2l | ⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) ) → ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = 𝐴 ) |
| 47 | 46 | eqeq1d | ⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) ) → ( ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran 𝑓 ↔ 𝐴 = ∪ ran 𝑓 ) ) |
| 48 | 47 | rexbidv | ⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) ) → ( ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran 𝑓 ↔ ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) 𝐴 = ∪ ran 𝑓 ) ) |
| 49 | 39 48 | mpbid | ⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) ) → ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) 𝐴 = ∪ ran 𝑓 ) |
| 50 | 6 49 | rexlimddv | ⊢ ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) → ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) 𝐴 = ∪ ran 𝑓 ) |