This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transposition (as a kind of function) is the function transposing the two points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| pmtrrn.r | |- R = ran T |
||
| pmtrfrn.p | |- P = dom ( F \ _I ) |
||
| Assertion | pmtrfrn | |- ( F e. R -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrrn.t | |- T = ( pmTrsp ` D ) |
|
| 2 | pmtrrn.r | |- R = ran T |
|
| 3 | pmtrfrn.p | |- P = dom ( F \ _I ) |
|
| 4 | noel | |- -. F e. (/) |
|
| 5 | 1 | rnfvprc | |- ( -. D e. _V -> ran T = (/) ) |
| 6 | 2 5 | eqtrid | |- ( -. D e. _V -> R = (/) ) |
| 7 | 6 | eleq2d | |- ( -. D e. _V -> ( F e. R <-> F e. (/) ) ) |
| 8 | 4 7 | mtbiri | |- ( -. D e. _V -> -. F e. R ) |
| 9 | 8 | con4i | |- ( F e. R -> D e. _V ) |
| 10 | mptexg | |- ( D e. _V -> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) e. _V ) |
|
| 11 | 10 | ralrimivw | |- ( D e. _V -> A. w e. { x e. ~P D | x ~~ 2o } ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) e. _V ) |
| 12 | eqid | |- ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) = ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) |
|
| 13 | 12 | fnmpt | |- ( A. w e. { x e. ~P D | x ~~ 2o } ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) e. _V -> ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) Fn { x e. ~P D | x ~~ 2o } ) |
| 14 | 11 13 | syl | |- ( D e. _V -> ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) Fn { x e. ~P D | x ~~ 2o } ) |
| 15 | 1 | pmtrfval | |- ( D e. _V -> T = ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) ) |
| 16 | 15 | fneq1d | |- ( D e. _V -> ( T Fn { x e. ~P D | x ~~ 2o } <-> ( w e. { x e. ~P D | x ~~ 2o } |-> ( z e. D |-> if ( z e. w , U. ( w \ { z } ) , z ) ) ) Fn { x e. ~P D | x ~~ 2o } ) ) |
| 17 | 14 16 | mpbird | |- ( D e. _V -> T Fn { x e. ~P D | x ~~ 2o } ) |
| 18 | fvelrnb | |- ( T Fn { x e. ~P D | x ~~ 2o } -> ( F e. ran T <-> E. y e. { x e. ~P D | x ~~ 2o } ( T ` y ) = F ) ) |
|
| 19 | 17 18 | syl | |- ( D e. _V -> ( F e. ran T <-> E. y e. { x e. ~P D | x ~~ 2o } ( T ` y ) = F ) ) |
| 20 | 2 | eleq2i | |- ( F e. R <-> F e. ran T ) |
| 21 | breq1 | |- ( x = y -> ( x ~~ 2o <-> y ~~ 2o ) ) |
|
| 22 | 21 | rexrab | |- ( E. y e. { x e. ~P D | x ~~ 2o } ( T ` y ) = F <-> E. y e. ~P D ( y ~~ 2o /\ ( T ` y ) = F ) ) |
| 23 | 22 | bicomi | |- ( E. y e. ~P D ( y ~~ 2o /\ ( T ` y ) = F ) <-> E. y e. { x e. ~P D | x ~~ 2o } ( T ` y ) = F ) |
| 24 | 19 20 23 | 3bitr4g | |- ( D e. _V -> ( F e. R <-> E. y e. ~P D ( y ~~ 2o /\ ( T ` y ) = F ) ) ) |
| 25 | elpwi | |- ( y e. ~P D -> y C_ D ) |
|
| 26 | simp1 | |- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> D e. _V ) |
|
| 27 | 1 | pmtrmvd | |- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> dom ( ( T ` y ) \ _I ) = y ) |
| 28 | simp2 | |- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> y C_ D ) |
|
| 29 | 27 28 | eqsstrd | |- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> dom ( ( T ` y ) \ _I ) C_ D ) |
| 30 | simp3 | |- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> y ~~ 2o ) |
|
| 31 | 27 30 | eqbrtrd | |- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> dom ( ( T ` y ) \ _I ) ~~ 2o ) |
| 32 | 26 29 31 | 3jca | |- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) ) |
| 33 | 27 | eqcomd | |- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> y = dom ( ( T ` y ) \ _I ) ) |
| 34 | 33 | fveq2d | |- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> ( T ` y ) = ( T ` dom ( ( T ` y ) \ _I ) ) ) |
| 35 | 32 34 | jca | |- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> ( ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) /\ ( T ` y ) = ( T ` dom ( ( T ` y ) \ _I ) ) ) ) |
| 36 | difeq1 | |- ( ( T ` y ) = F -> ( ( T ` y ) \ _I ) = ( F \ _I ) ) |
|
| 37 | 36 | dmeqd | |- ( ( T ` y ) = F -> dom ( ( T ` y ) \ _I ) = dom ( F \ _I ) ) |
| 38 | 37 3 | eqtr4di | |- ( ( T ` y ) = F -> dom ( ( T ` y ) \ _I ) = P ) |
| 39 | sseq1 | |- ( dom ( ( T ` y ) \ _I ) = P -> ( dom ( ( T ` y ) \ _I ) C_ D <-> P C_ D ) ) |
|
| 40 | breq1 | |- ( dom ( ( T ` y ) \ _I ) = P -> ( dom ( ( T ` y ) \ _I ) ~~ 2o <-> P ~~ 2o ) ) |
|
| 41 | 39 40 | 3anbi23d | |- ( dom ( ( T ` y ) \ _I ) = P -> ( ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) <-> ( D e. _V /\ P C_ D /\ P ~~ 2o ) ) ) |
| 42 | 41 | adantl | |- ( ( ( T ` y ) = F /\ dom ( ( T ` y ) \ _I ) = P ) -> ( ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) <-> ( D e. _V /\ P C_ D /\ P ~~ 2o ) ) ) |
| 43 | simpl | |- ( ( ( T ` y ) = F /\ dom ( ( T ` y ) \ _I ) = P ) -> ( T ` y ) = F ) |
|
| 44 | fveq2 | |- ( dom ( ( T ` y ) \ _I ) = P -> ( T ` dom ( ( T ` y ) \ _I ) ) = ( T ` P ) ) |
|
| 45 | 44 | adantl | |- ( ( ( T ` y ) = F /\ dom ( ( T ` y ) \ _I ) = P ) -> ( T ` dom ( ( T ` y ) \ _I ) ) = ( T ` P ) ) |
| 46 | 43 45 | eqeq12d | |- ( ( ( T ` y ) = F /\ dom ( ( T ` y ) \ _I ) = P ) -> ( ( T ` y ) = ( T ` dom ( ( T ` y ) \ _I ) ) <-> F = ( T ` P ) ) ) |
| 47 | 42 46 | anbi12d | |- ( ( ( T ` y ) = F /\ dom ( ( T ` y ) \ _I ) = P ) -> ( ( ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) /\ ( T ` y ) = ( T ` dom ( ( T ` y ) \ _I ) ) ) <-> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) |
| 48 | 38 47 | mpdan | |- ( ( T ` y ) = F -> ( ( ( D e. _V /\ dom ( ( T ` y ) \ _I ) C_ D /\ dom ( ( T ` y ) \ _I ) ~~ 2o ) /\ ( T ` y ) = ( T ` dom ( ( T ` y ) \ _I ) ) ) <-> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) |
| 49 | 35 48 | syl5ibcom | |- ( ( D e. _V /\ y C_ D /\ y ~~ 2o ) -> ( ( T ` y ) = F -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) |
| 50 | 49 | 3exp | |- ( D e. _V -> ( y C_ D -> ( y ~~ 2o -> ( ( T ` y ) = F -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) ) ) |
| 51 | 50 | imp4a | |- ( D e. _V -> ( y C_ D -> ( ( y ~~ 2o /\ ( T ` y ) = F ) -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) ) |
| 52 | 25 51 | syl5 | |- ( D e. _V -> ( y e. ~P D -> ( ( y ~~ 2o /\ ( T ` y ) = F ) -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) ) |
| 53 | 52 | rexlimdv | |- ( D e. _V -> ( E. y e. ~P D ( y ~~ 2o /\ ( T ` y ) = F ) -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) |
| 54 | 24 53 | sylbid | |- ( D e. _V -> ( F e. R -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) ) |
| 55 | 9 54 | mpcom | |- ( F e. R -> ( ( D e. _V /\ P C_ D /\ P ~~ 2o ) /\ F = ( T ` P ) ) ) |