This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmaple.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmaple.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| pmaple.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmaple | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmaple.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmaple.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | pmaple.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 4 | hlpos | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Poset ) | |
| 5 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 6 | 1 5 | atbase | ⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ 𝐵 ) |
| 7 | 1 2 | postr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑝 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) → 𝑝 ≤ 𝑌 ) ) |
| 8 | 7 | exp4b | ⊢ ( 𝐾 ∈ Poset → ( ( 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) |
| 9 | 8 | 3expd | ⊢ ( 𝐾 ∈ Poset → ( 𝑝 ∈ 𝐵 → ( 𝑋 ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) ) ) |
| 10 | 9 | com23 | ⊢ ( 𝐾 ∈ Poset → ( 𝑋 ∈ 𝐵 → ( 𝑝 ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) ) ) |
| 11 | 10 | com34 | ⊢ ( 𝐾 ∈ Poset → ( 𝑋 ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( 𝑝 ∈ 𝐵 → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) ) ) |
| 12 | 11 | 3imp | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ 𝐵 → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) |
| 13 | 6 12 | syl5 | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) |
| 14 | 4 13 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → ( 𝑝 ≤ 𝑋 → ( 𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌 ) ) ) ) |
| 15 | 14 | com34 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → ( 𝑋 ≤ 𝑌 → ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) ) |
| 16 | 15 | com23 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) ) |
| 17 | 16 | imp31 | ⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) ∧ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ) → ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) |
| 18 | 17 | ss2rabdv | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) |
| 19 | 18 | ex | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) |
| 20 | hlclat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) | |
| 21 | ssrab2 | ⊢ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ⊆ ( Atoms ‘ 𝐾 ) | |
| 22 | 1 5 | atssbase | ⊢ ( Atoms ‘ 𝐾 ) ⊆ 𝐵 |
| 23 | 21 22 | sstri | ⊢ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ⊆ 𝐵 |
| 24 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 25 | 1 2 24 | lubss | ⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ⊆ 𝐵 ∧ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) |
| 26 | 23 25 | mp3an2 | ⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) |
| 27 | 26 | ex | ⊢ ( 𝐾 ∈ CLat → ( { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) ) |
| 28 | 20 27 | syl | ⊢ ( 𝐾 ∈ HL → ( { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) ) |
| 29 | 28 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) ) |
| 30 | hlomcmat | ⊢ ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ) | |
| 31 | 30 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ) |
| 32 | simp2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 33 | 1 2 24 5 | atlatmstc | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) = 𝑋 ) |
| 34 | 31 32 33 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) = 𝑋 ) |
| 35 | simp3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 36 | 1 2 24 5 | atlatmstc | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑌 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) = 𝑌 ) |
| 37 | 31 35 36 | syl2anc | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) = 𝑌 ) |
| 38 | 34 37 | breq12d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ↔ 𝑋 ≤ 𝑌 ) ) |
| 39 | 29 38 | sylibd | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } → 𝑋 ≤ 𝑌 ) ) |
| 40 | 19 39 | impbid | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) |
| 41 | 1 2 5 3 | pmapval | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) |
| 42 | 41 | 3adant3 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ) |
| 43 | 1 2 5 3 | pmapval | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑌 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) |
| 44 | 43 | 3adant2 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑌 ) = { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) |
| 45 | 42 44 | sseq12d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ↔ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∣ 𝑝 ≤ 𝑌 } ) ) |
| 46 | 40 45 | bitr4d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ) ) |