This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmap11.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmap11.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmap11 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmap11.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmap11.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 3 | eqss | ⊢ ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ 𝑌 ) ↔ ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ∧ ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ 𝑋 ) ) ) | |
| 4 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 5 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 6 | 1 5 | latasymb | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ∧ 𝑌 ( le ‘ 𝐾 ) 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
| 7 | 4 6 | syl3an1 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ∧ 𝑌 ( le ‘ 𝐾 ) 𝑋 ) ↔ 𝑋 = 𝑌 ) ) |
| 8 | 1 5 2 | pmaple | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ↔ ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ) ) |
| 9 | 1 5 2 | pmaple | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ 𝑋 ) ) ) |
| 10 | 9 | 3com23 | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ 𝑋 ) ) ) |
| 11 | 8 10 | anbi12d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ∧ 𝑌 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ∧ ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 12 | 7 11 | bitr3d | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = 𝑌 ↔ ( ( 𝑀 ‘ 𝑋 ) ⊆ ( 𝑀 ‘ 𝑌 ) ∧ ( 𝑀 ‘ 𝑌 ) ⊆ ( 𝑀 ‘ 𝑋 ) ) ) ) |
| 13 | 3 12 | bitr4id | ⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑀 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |