This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | chsscon3i | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chjcl.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 | chssii | ⊢ 𝐴 ⊆ ℋ |
| 4 | 2 | chssii | ⊢ 𝐵 ⊆ ℋ |
| 5 | occon | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ 𝐵 → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( 𝐴 ⊆ 𝐵 → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 7 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 8 | 7 | chssii | ⊢ ( ⊥ ‘ 𝐵 ) ⊆ ℋ |
| 9 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 10 | 9 | chssii | ⊢ ( ⊥ ‘ 𝐴 ) ⊆ ℋ |
| 11 | occon | ⊢ ( ( ( ⊥ ‘ 𝐵 ) ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) | |
| 12 | 8 10 11 | mp2an | ⊢ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 13 | 1 | pjococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 |
| 14 | 2 | pjococi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) = 𝐵 |
| 15 | 12 13 14 | 3sstr3g | ⊢ ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
| 16 | 6 15 | impbii | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) |