This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of a vector in the projection subspace. Lemma 4.4(ii) of Beran p. 111. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjop.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjop.2 | ⊢ 𝐴 ∈ ℋ | ||
| Assertion | pjchi | ⊢ ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjop.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjop.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 4 | ax-hvaddid | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ 0ℎ ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ 0ℎ ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) |
| 6 | 1 2 | pjpji | ⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 7 | 1 2 | pjoc1i | ⊢ ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) |
| 8 | 7 | biimpi | ⊢ ( 𝐴 ∈ 𝐻 → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = 0ℎ ) |
| 9 | 8 | oveq2d | ⊢ ( 𝐴 ∈ 𝐻 → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ 0ℎ ) ) |
| 10 | 6 9 | eqtr2id | ⊢ ( 𝐴 ∈ 𝐻 → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ 0ℎ ) = 𝐴 ) |
| 11 | 5 10 | eqtr3id | ⊢ ( 𝐴 ∈ 𝐻 → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 ) |
| 12 | 1 2 | pjclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 |
| 13 | eleq1 | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ↔ 𝐴 ∈ 𝐻 ) ) | |
| 14 | 12 13 | mpbii | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ 𝐻 ) |
| 15 | 11 14 | impbii | ⊢ ( 𝐴 ∈ 𝐻 ↔ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = 𝐴 ) |