This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for subset relationships of projections. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjidm.2 | ⊢ 𝐴 ∈ ℋ | ||
| pjsslem.1 | ⊢ 𝐺 ∈ Cℋ | ||
| Assertion | pjsslem | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjidm.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | pjsslem.1 | ⊢ 𝐺 ∈ Cℋ | |
| 4 | pjo | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) | |
| 5 | 1 2 4 | mp2an | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 6 | pjo | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) | |
| 7 | 3 2 6 | mp2an | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) |
| 8 | 5 7 | oveq12i | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) = ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) −ℎ ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 9 | helch | ⊢ ℋ ∈ Cℋ | |
| 10 | 9 2 | pjclii | ⊢ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ |
| 11 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 12 | 3 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ |
| 13 | 10 11 10 12 | hvsubsub4i | ⊢ ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) −ℎ ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) = ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) −ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 14 | hvsubid | ⊢ ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ∈ ℋ → ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) = 0ℎ ) | |
| 15 | 10 14 | ax-mp | ⊢ ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) = 0ℎ |
| 16 | 15 | oveq1i | ⊢ ( ( ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ℋ ) ‘ 𝐴 ) ) −ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) = ( 0ℎ −ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 17 | 8 13 16 | 3eqtri | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) = ( 0ℎ −ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 18 | 11 12 | hvsubcli | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ∈ ℋ |
| 19 | 18 | hv2negi | ⊢ ( 0ℎ −ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) = ( - 1 ·ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 20 | 11 12 | hvnegdii | ⊢ ( - 1 ·ℎ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 21 | 17 19 20 | 3eqtri | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |