This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication with the zero vector. (Contributed by NM, 30-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvmul0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·ℎ 0ℎ ) = 0ℎ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul01 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) ·ℎ 0ℎ ) = ( 0 ·ℎ 0ℎ ) ) |
| 3 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 4 | ax-hvmul0 | ⊢ ( 0ℎ ∈ ℋ → ( 0 ·ℎ 0ℎ ) = 0ℎ ) | |
| 5 | 3 4 | ax-mp | ⊢ ( 0 ·ℎ 0ℎ ) = 0ℎ |
| 6 | 2 5 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) ·ℎ 0ℎ ) = 0ℎ ) |
| 7 | 0cn | ⊢ 0 ∈ ℂ | |
| 8 | ax-hvmulass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 0ℎ ∈ ℋ ) → ( ( 𝐴 · 0 ) ·ℎ 0ℎ ) = ( 𝐴 ·ℎ ( 0 ·ℎ 0ℎ ) ) ) | |
| 9 | 7 3 8 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · 0 ) ·ℎ 0ℎ ) = ( 𝐴 ·ℎ ( 0 ·ℎ 0ℎ ) ) ) |
| 10 | 6 9 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → 0ℎ = ( 𝐴 ·ℎ ( 0 ·ℎ 0ℎ ) ) ) |
| 11 | 5 | oveq2i | ⊢ ( 𝐴 ·ℎ ( 0 ·ℎ 0ℎ ) ) = ( 𝐴 ·ℎ 0ℎ ) |
| 12 | 10 11 | eqtr2di | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·ℎ 0ℎ ) = 0ℎ ) |