This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for projections. Theorem 4.5(i)->(ii) of Beran p. 112. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjidm.2 | ⊢ 𝐴 ∈ ℋ | ||
| pjsslem.1 | ⊢ 𝐺 ∈ Cℋ | ||
| Assertion | pjss2i | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjidm.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | pjsslem.1 | ⊢ 𝐺 ∈ Cℋ | |
| 4 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 5 | 4 2 | pjclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) |
| 6 | 1 3 | chsscon3i | ⊢ ( 𝐻 ⊆ 𝐺 ↔ ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) ) |
| 7 | 3 | choccli | ⊢ ( ⊥ ‘ 𝐺 ) ∈ Cℋ |
| 8 | 7 2 | pjclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐺 ) |
| 9 | ssel | ⊢ ( ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐺 ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) ) | |
| 10 | 8 9 | mpi | ⊢ ( ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 11 | 6 10 | sylbi | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 12 | 4 | chshii | ⊢ ( ⊥ ‘ 𝐻 ) ∈ Sℋ |
| 13 | shsubcl | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Sℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) | |
| 14 | 12 13 | mp3an1 | ⊢ ( ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 15 | 5 11 14 | sylancr | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 16 | 1 2 3 | pjsslem | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 17 | 16 | eleq1i | ⊢ ( ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 18 | 3 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ |
| 19 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 20 | 18 19 | hvsubcli | ⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℋ |
| 21 | 1 20 | pjoc2i | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = 0ℎ ) |
| 22 | 17 21 | bitri | ⊢ ( ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = 0ℎ ) |
| 23 | 1 18 19 | pjsubii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 24 | 23 | eqeq1i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = 0ℎ ↔ ( ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = 0ℎ ) |
| 25 | 1 18 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ∈ ℋ |
| 26 | 1 19 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℋ |
| 27 | 25 26 | hvsubeq0i | ⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = 0ℎ ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 28 | 24 27 | bitri | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) = 0ℎ ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 29 | 1 2 | pjidmi | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) |
| 30 | 29 | eqeq2i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↔ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 31 | 22 28 30 | 3bitrri | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ↔ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 32 | 15 31 | sylibr | ⊢ ( 𝐻 ⊆ 𝐺 → ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |