This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection of vector difference is difference of projections. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjidm.2 | ⊢ 𝐴 ∈ ℋ | ||
| pjsub.3 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | pjsubii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjidm.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | pjsub.3 | ⊢ 𝐵 ∈ ℋ | |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | 4 3 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
| 6 | 1 2 5 | pjaddii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ ( - 1 ·ℎ 𝐵 ) ) ) |
| 7 | 1 3 4 | pjmulii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( - 1 ·ℎ 𝐵 ) ) = ( - 1 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| 8 | 7 | oveq2i | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| 9 | 6 8 | eqtri | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| 10 | 2 3 | hvsubvali | ⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 11 | 10 | fveq2i | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 12 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 13 | 1 3 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ ℋ |
| 14 | 12 13 | hvsubvali | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( - 1 ·ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| 15 | 9 11 14 | 3eqtr4i | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |