This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference between two vectors is zero, they are equal. (Contributed by NM, 18-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvnegdi.1 | ⊢ 𝐴 ∈ ℋ | |
| hvnegdi.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | hvsubeq0i | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | hvnegdi.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1 2 | hvsubvali | ⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 4 | 3 | eqeq1i | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ ) |
| 5 | oveq1 | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ 𝐵 ) = ( 0ℎ +ℎ 𝐵 ) ) | |
| 6 | 4 5 | sylbi | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ → ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ 𝐵 ) = ( 0ℎ +ℎ 𝐵 ) ) |
| 7 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 8 | 7 2 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
| 9 | 1 8 2 | hvadd32i | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ 𝐵 ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 10 | 1 2 8 | hvassi | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 11 | 2 | hvnegidi | ⊢ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ |
| 12 | 11 | oveq2i | ⊢ ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ 0ℎ ) |
| 13 | ax-hvaddid | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 0ℎ ) = 𝐴 ) | |
| 14 | 1 13 | ax-mp | ⊢ ( 𝐴 +ℎ 0ℎ ) = 𝐴 |
| 15 | 12 14 | eqtri | ⊢ ( 𝐴 +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = 𝐴 |
| 16 | 10 15 | eqtri | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) = 𝐴 |
| 17 | 9 16 | eqtri | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) +ℎ 𝐵 ) = 𝐴 |
| 18 | 2 | hvaddlidi | ⊢ ( 0ℎ +ℎ 𝐵 ) = 𝐵 |
| 19 | 6 17 18 | 3eqtr3g | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ → 𝐴 = 𝐵 ) |
| 20 | oveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 −ℎ 𝐵 ) = ( 𝐵 −ℎ 𝐵 ) ) | |
| 21 | hvsubid | ⊢ ( 𝐵 ∈ ℋ → ( 𝐵 −ℎ 𝐵 ) = 0ℎ ) | |
| 22 | 2 21 | ax-mp | ⊢ ( 𝐵 −ℎ 𝐵 ) = 0ℎ |
| 23 | 20 22 | eqtrdi | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 −ℎ 𝐵 ) = 0ℎ ) |
| 24 | 19 23 | impbii | ⊢ ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = 𝐵 ) |