This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection on the span of a singleton. (The proof ws shortened by Mario Carneiro, 15-Dec-2013.) (Contributed by NM, 28-May-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjspansn | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( ( 𝐵 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnch | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Cℋ ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( span ‘ { 𝐴 } ) ∈ Cℋ ) |
| 3 | simp2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 𝐵 ∈ ℋ ) | |
| 4 | eqid | ⊢ ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) | |
| 5 | pjeq | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ↔ ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ∧ ∃ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) ) | |
| 6 | 4 5 | mpbii | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ∧ ∃ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) |
| 7 | 6 | simprd | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ∃ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) |
| 8 | 2 3 7 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ∃ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) |
| 9 | oveq1 | ⊢ ( 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) → ( 𝐵 ·ih 𝐴 ) = ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ·ih 𝐴 ) ) | |
| 10 | 9 | ad2antll | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∧ 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) → ( 𝐵 ·ih 𝐴 ) = ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ·ih 𝐴 ) ) |
| 11 | pjhcl | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ∈ ℋ ) | |
| 12 | 2 3 11 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ∈ ℋ ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ∈ ℋ ) |
| 14 | choccl | ⊢ ( ( span ‘ { 𝐴 } ) ∈ Cℋ → ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∈ Cℋ ) | |
| 15 | 1 14 | syl | ⊢ ( 𝐴 ∈ ℋ → ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∈ Cℋ ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∈ Cℋ ) |
| 17 | chel | ⊢ ( ( ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∈ Cℋ ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → 𝑦 ∈ ℋ ) | |
| 18 | 16 17 | sylan | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → 𝑦 ∈ ℋ ) |
| 19 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → 𝐴 ∈ ℋ ) | |
| 20 | ax-his2 | ⊢ ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ·ih 𝐴 ) = ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) + ( 𝑦 ·ih 𝐴 ) ) ) | |
| 21 | 13 18 19 20 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ·ih 𝐴 ) = ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) + ( 𝑦 ·ih 𝐴 ) ) ) |
| 22 | spansnsh | ⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Sℋ ) | |
| 23 | 22 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( span ‘ { 𝐴 } ) ∈ Sℋ ) |
| 24 | spansnid | ⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) |
| 26 | simpr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) | |
| 27 | shocorth | ⊢ ( ( span ‘ { 𝐴 } ) ∈ Sℋ → ( ( 𝐴 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( 𝐴 ·ih 𝑦 ) = 0 ) ) | |
| 28 | 27 | 3impib | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( 𝐴 ·ih 𝑦 ) = 0 ) |
| 29 | 23 25 26 28 | syl3anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( 𝐴 ·ih 𝑦 ) = 0 ) |
| 30 | 15 17 | sylan | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → 𝑦 ∈ ℋ ) |
| 31 | orthcom | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·ih 𝑦 ) = 0 ↔ ( 𝑦 ·ih 𝐴 ) = 0 ) ) | |
| 32 | 30 31 | syldan | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( ( 𝐴 ·ih 𝑦 ) = 0 ↔ ( 𝑦 ·ih 𝐴 ) = 0 ) ) |
| 33 | 29 32 | mpbid | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( 𝑦 ·ih 𝐴 ) = 0 ) |
| 34 | 33 | 3ad2antl1 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( 𝑦 ·ih 𝐴 ) = 0 ) |
| 35 | 34 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) + ( 𝑦 ·ih 𝐴 ) ) = ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) + 0 ) ) |
| 36 | hicl | ⊢ ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) ∈ ℂ ) | |
| 37 | 13 19 36 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) ∈ ℂ ) |
| 38 | 37 | addridd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) + 0 ) = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) ) |
| 39 | 21 35 38 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ) → ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ·ih 𝐴 ) = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) ) |
| 40 | 39 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∧ 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) → ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ·ih 𝐴 ) = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) ) |
| 41 | 10 40 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∧ 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) → ( 𝐵 ·ih 𝐴 ) = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) ) |
| 42 | 41 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∧ 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) → ( ( 𝐵 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ) |
| 43 | 42 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∧ 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) → ( ( ( 𝐵 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) = ( ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) ) |
| 44 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∧ 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) → 𝐴 ∈ ℋ ) | |
| 45 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∧ 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) → 𝐴 ≠ 0ℎ ) | |
| 46 | axpjcl | ⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) | |
| 47 | 2 3 46 | syl2anc | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∧ 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 49 | normcan | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) → ( ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ) | |
| 50 | 44 45 48 49 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∧ 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) → ( ( ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) = ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) ) |
| 51 | 43 50 | eqtr2d | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑦 ∈ ( ⊥ ‘ ( span ‘ { 𝐴 } ) ) ∧ 𝐵 = ( ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) +ℎ 𝑦 ) ) ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( ( 𝐵 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) ) |
| 52 | 8 51 | rexlimddv | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( projℎ ‘ ( span ‘ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( ( 𝐵 ·ih 𝐴 ) / ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) ·ℎ 𝐴 ) ) |