This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation-type law that "extracts" a vector A from its inner product with a proportional vector B . (Contributed by NM, 18-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normcan | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ∧ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ·ℎ 𝐵 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elspansn | ⊢ ( 𝐵 ∈ ℋ → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) ) |
| 3 | oveq1 | ⊢ ( 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( 𝐴 ·ih 𝐵 ) = ( ( 𝑥 ·ℎ 𝐵 ) ·ih 𝐵 ) ) | |
| 4 | simpr | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 5 | simpl | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℋ ) | |
| 6 | ax-his3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝐵 ) ·ih 𝐵 ) = ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) ) | |
| 7 | 4 5 5 6 | syl3anc | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑥 ·ℎ 𝐵 ) ·ih 𝐵 ) = ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) ) |
| 8 | 3 7 | sylan9eqr | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( 𝐴 ·ih 𝐵 ) = ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) ) |
| 9 | normsq | ⊢ ( 𝐵 ∈ ℋ → ( ( normℎ ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 ) ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( normℎ ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 ) ) |
| 11 | 8 10 | oveq12d | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) / ( 𝐵 ·ih 𝐵 ) ) ) |
| 12 | 11 | adantllr | ⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) / ( 𝐵 ·ih 𝐵 ) ) ) |
| 13 | simpr | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 14 | hicl | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐵 ·ih 𝐵 ) ∈ ℂ ) | |
| 15 | 14 | anidms | ⊢ ( 𝐵 ∈ ℋ → ( 𝐵 ·ih 𝐵 ) ∈ ℂ ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) → ( 𝐵 ·ih 𝐵 ) ∈ ℂ ) |
| 17 | his6 | ⊢ ( 𝐵 ∈ ℋ → ( ( 𝐵 ·ih 𝐵 ) = 0 ↔ 𝐵 = 0ℎ ) ) | |
| 18 | 17 | necon3bid | ⊢ ( 𝐵 ∈ ℋ → ( ( 𝐵 ·ih 𝐵 ) ≠ 0 ↔ 𝐵 ≠ 0ℎ ) ) |
| 19 | 18 | biimpar | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( 𝐵 ·ih 𝐵 ) ≠ 0 ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) → ( 𝐵 ·ih 𝐵 ) ≠ 0 ) |
| 21 | 13 16 20 | divcan4d | ⊢ ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) → ( ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) / ( 𝐵 ·ih 𝐵 ) ) = 𝑥 ) |
| 22 | 21 | adantr | ⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( 𝑥 · ( 𝐵 ·ih 𝐵 ) ) / ( 𝐵 ·ih 𝐵 ) ) = 𝑥 ) |
| 23 | 12 22 | eqtrd | ⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) = 𝑥 ) |
| 24 | 23 | oveq1d | ⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ·ℎ 𝐵 ) = ( 𝑥 ·ℎ 𝐵 ) ) |
| 25 | simpr | ⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) | |
| 26 | 24 25 | eqtr4d | ⊢ ( ( ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) ∧ 𝑥 ∈ ℂ ) ∧ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ·ℎ 𝐵 ) = 𝐴 ) |
| 27 | 26 | rexlimdva2 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( ∃ 𝑥 ∈ ℂ 𝐴 = ( 𝑥 ·ℎ 𝐵 ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ·ℎ 𝐵 ) = 𝐴 ) ) |
| 28 | 2 27 | sylbid | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ) → ( 𝐴 ∈ ( span ‘ { 𝐵 } ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ·ℎ 𝐵 ) = 𝐴 ) ) |
| 29 | 28 | 3impia | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐵 ≠ 0ℎ ∧ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) → ( ( ( 𝐴 ·ih 𝐵 ) / ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ·ℎ 𝐵 ) = 𝐴 ) |