This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of Hilbert space is orthogonal to the span of the singleton of a projection onto its orthocomplement. (Contributed by NM, 4-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spansnpj.1 | ⊢ 𝐴 ⊆ ℋ | |
| spansnpj.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | spansnpji | ⊢ 𝐴 ⊆ ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnpj.1 | ⊢ 𝐴 ⊆ ℋ | |
| 2 | spansnpj.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | ococss | ⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | |
| 4 | 1 3 | ax-mp | ⊢ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) |
| 5 | occl | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) | |
| 6 | 1 5 | ax-mp | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 7 | 6 | chssii | ⊢ ( ⊥ ‘ 𝐴 ) ⊆ ℋ |
| 8 | 6 2 | pjclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐴 ) |
| 9 | snssi | ⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐴 ) → { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ( ⊥ ‘ 𝐴 ) ) | |
| 10 | 8 9 | ax-mp | ⊢ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ( ⊥ ‘ 𝐴 ) |
| 11 | spanss | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ ∧ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ⊆ ( ⊥ ‘ 𝐴 ) ) → ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ⊆ ( span ‘ ( ⊥ ‘ 𝐴 ) ) ) | |
| 12 | 7 10 11 | mp2an | ⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ⊆ ( span ‘ ( ⊥ ‘ 𝐴 ) ) |
| 13 | 6 | chshii | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Sℋ |
| 14 | spanid | ⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → ( span ‘ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ 𝐴 ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ( span ‘ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ 𝐴 ) |
| 16 | 12 15 | sseqtri | ⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ⊆ ( ⊥ ‘ 𝐴 ) |
| 17 | 6 2 | pjhclii | ⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) ∈ ℋ |
| 18 | 17 | spansnchi | ⊢ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ∈ Cℋ |
| 19 | 18 6 | chsscon3i | ⊢ ( ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ⊆ ( ⊥ ‘ 𝐴 ) ↔ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) ) |
| 20 | 16 19 | mpbi | ⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |
| 21 | 4 20 | sstri | ⊢ 𝐴 ⊆ ( ⊥ ‘ ( span ‘ { ( ( projℎ ‘ ( ⊥ ‘ 𝐴 ) ) ‘ 𝐵 ) } ) ) |