This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projection on the span of a singleton. (The proof ws shortened by Mario Carneiro, 15-Dec-2013.) (Contributed by NM, 28-May-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjspansn | |- ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) -> ( ( projh ` ( span ` { A } ) ) ` B ) = ( ( ( B .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnch | |- ( A e. ~H -> ( span ` { A } ) e. CH ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) -> ( span ` { A } ) e. CH ) |
| 3 | simp2 | |- ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) -> B e. ~H ) |
|
| 4 | eqid | |- ( ( projh ` ( span ` { A } ) ) ` B ) = ( ( projh ` ( span ` { A } ) ) ` B ) |
|
| 5 | pjeq | |- ( ( ( span ` { A } ) e. CH /\ B e. ~H ) -> ( ( ( projh ` ( span ` { A } ) ) ` B ) = ( ( projh ` ( span ` { A } ) ) ` B ) <-> ( ( ( projh ` ( span ` { A } ) ) ` B ) e. ( span ` { A } ) /\ E. y e. ( _|_ ` ( span ` { A } ) ) B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) ) |
|
| 6 | 4 5 | mpbii | |- ( ( ( span ` { A } ) e. CH /\ B e. ~H ) -> ( ( ( projh ` ( span ` { A } ) ) ` B ) e. ( span ` { A } ) /\ E. y e. ( _|_ ` ( span ` { A } ) ) B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) |
| 7 | 6 | simprd | |- ( ( ( span ` { A } ) e. CH /\ B e. ~H ) -> E. y e. ( _|_ ` ( span ` { A } ) ) B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) |
| 8 | 2 3 7 | syl2anc | |- ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) -> E. y e. ( _|_ ` ( span ` { A } ) ) B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) |
| 9 | oveq1 | |- ( B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) -> ( B .ih A ) = ( ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) .ih A ) ) |
|
| 10 | 9 | ad2antll | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ ( y e. ( _|_ ` ( span ` { A } ) ) /\ B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) -> ( B .ih A ) = ( ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) .ih A ) ) |
| 11 | pjhcl | |- ( ( ( span ` { A } ) e. CH /\ B e. ~H ) -> ( ( projh ` ( span ` { A } ) ) ` B ) e. ~H ) |
|
| 12 | 2 3 11 | syl2anc | |- ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) -> ( ( projh ` ( span ` { A } ) ) ` B ) e. ~H ) |
| 13 | 12 | adantr | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( ( projh ` ( span ` { A } ) ) ` B ) e. ~H ) |
| 14 | choccl | |- ( ( span ` { A } ) e. CH -> ( _|_ ` ( span ` { A } ) ) e. CH ) |
|
| 15 | 1 14 | syl | |- ( A e. ~H -> ( _|_ ` ( span ` { A } ) ) e. CH ) |
| 16 | 15 | 3ad2ant1 | |- ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) -> ( _|_ ` ( span ` { A } ) ) e. CH ) |
| 17 | chel | |- ( ( ( _|_ ` ( span ` { A } ) ) e. CH /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> y e. ~H ) |
|
| 18 | 16 17 | sylan | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> y e. ~H ) |
| 19 | simpl1 | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> A e. ~H ) |
|
| 20 | ax-his2 | |- ( ( ( ( projh ` ( span ` { A } ) ) ` B ) e. ~H /\ y e. ~H /\ A e. ~H ) -> ( ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) .ih A ) = ( ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) + ( y .ih A ) ) ) |
|
| 21 | 13 18 19 20 | syl3anc | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) .ih A ) = ( ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) + ( y .ih A ) ) ) |
| 22 | spansnsh | |- ( A e. ~H -> ( span ` { A } ) e. SH ) |
|
| 23 | 22 | adantr | |- ( ( A e. ~H /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( span ` { A } ) e. SH ) |
| 24 | spansnid | |- ( A e. ~H -> A e. ( span ` { A } ) ) |
|
| 25 | 24 | adantr | |- ( ( A e. ~H /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> A e. ( span ` { A } ) ) |
| 26 | simpr | |- ( ( A e. ~H /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> y e. ( _|_ ` ( span ` { A } ) ) ) |
|
| 27 | shocorth | |- ( ( span ` { A } ) e. SH -> ( ( A e. ( span ` { A } ) /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( A .ih y ) = 0 ) ) |
|
| 28 | 27 | 3impib | |- ( ( ( span ` { A } ) e. SH /\ A e. ( span ` { A } ) /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( A .ih y ) = 0 ) |
| 29 | 23 25 26 28 | syl3anc | |- ( ( A e. ~H /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( A .ih y ) = 0 ) |
| 30 | 15 17 | sylan | |- ( ( A e. ~H /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> y e. ~H ) |
| 31 | orthcom | |- ( ( A e. ~H /\ y e. ~H ) -> ( ( A .ih y ) = 0 <-> ( y .ih A ) = 0 ) ) |
|
| 32 | 30 31 | syldan | |- ( ( A e. ~H /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( ( A .ih y ) = 0 <-> ( y .ih A ) = 0 ) ) |
| 33 | 29 32 | mpbid | |- ( ( A e. ~H /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( y .ih A ) = 0 ) |
| 34 | 33 | 3ad2antl1 | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( y .ih A ) = 0 ) |
| 35 | 34 | oveq2d | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) + ( y .ih A ) ) = ( ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) + 0 ) ) |
| 36 | hicl | |- ( ( ( ( projh ` ( span ` { A } ) ) ` B ) e. ~H /\ A e. ~H ) -> ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) e. CC ) |
|
| 37 | 13 19 36 | syl2anc | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) e. CC ) |
| 38 | 37 | addridd | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) + 0 ) = ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) ) |
| 39 | 21 35 38 | 3eqtrd | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ y e. ( _|_ ` ( span ` { A } ) ) ) -> ( ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) .ih A ) = ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) ) |
| 40 | 39 | adantrr | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ ( y e. ( _|_ ` ( span ` { A } ) ) /\ B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) -> ( ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) .ih A ) = ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) ) |
| 41 | 10 40 | eqtrd | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ ( y e. ( _|_ ` ( span ` { A } ) ) /\ B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) -> ( B .ih A ) = ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) ) |
| 42 | 41 | oveq1d | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ ( y e. ( _|_ ` ( span ` { A } ) ) /\ B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) -> ( ( B .ih A ) / ( ( normh ` A ) ^ 2 ) ) = ( ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) ) |
| 43 | 42 | oveq1d | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ ( y e. ( _|_ ` ( span ` { A } ) ) /\ B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) -> ( ( ( B .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) = ( ( ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) ) |
| 44 | simpl1 | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ ( y e. ( _|_ ` ( span ` { A } ) ) /\ B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) -> A e. ~H ) |
|
| 45 | simpl3 | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ ( y e. ( _|_ ` ( span ` { A } ) ) /\ B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) -> A =/= 0h ) |
|
| 46 | axpjcl | |- ( ( ( span ` { A } ) e. CH /\ B e. ~H ) -> ( ( projh ` ( span ` { A } ) ) ` B ) e. ( span ` { A } ) ) |
|
| 47 | 2 3 46 | syl2anc | |- ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) -> ( ( projh ` ( span ` { A } ) ) ` B ) e. ( span ` { A } ) ) |
| 48 | 47 | adantr | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ ( y e. ( _|_ ` ( span ` { A } ) ) /\ B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) -> ( ( projh ` ( span ` { A } ) ) ` B ) e. ( span ` { A } ) ) |
| 49 | normcan | |- ( ( A e. ~H /\ A =/= 0h /\ ( ( projh ` ( span ` { A } ) ) ` B ) e. ( span ` { A } ) ) -> ( ( ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) = ( ( projh ` ( span ` { A } ) ) ` B ) ) |
|
| 50 | 44 45 48 49 | syl3anc | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ ( y e. ( _|_ ` ( span ` { A } ) ) /\ B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) -> ( ( ( ( ( projh ` ( span ` { A } ) ) ` B ) .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) = ( ( projh ` ( span ` { A } ) ) ` B ) ) |
| 51 | 43 50 | eqtr2d | |- ( ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) /\ ( y e. ( _|_ ` ( span ` { A } ) ) /\ B = ( ( ( projh ` ( span ` { A } ) ) ` B ) +h y ) ) ) -> ( ( projh ` ( span ` { A } ) ) ` B ) = ( ( ( B .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) ) |
| 52 | 8 51 | rexlimddv | |- ( ( A e. ~H /\ B e. ~H /\ A =/= 0h ) -> ( ( projh ` ( span ` { A } ) ) ` B ) = ( ( ( B .ih A ) / ( ( normh ` A ) ^ 2 ) ) .h A ) ) |