This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| Assertion | hhph | ⊢ 𝑈 ∈ CPreHilOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnv.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | eqid | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 3 | 2 | hhnv | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec |
| 4 | normpar | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) ) = ( ( 2 · ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) | |
| 5 | hvsubval | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 −ℎ 𝑦 ) = ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) | |
| 6 | 5 | fveq2d | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) = ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) = ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) ) |
| 9 | hvaddcl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ) | |
| 10 | normcl | ⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ℝ ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ℝ ) |
| 12 | 11 | recnd | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ∈ ℂ ) |
| 13 | 12 | sqcld | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) ∈ ℂ ) |
| 14 | hvsubcl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 −ℎ 𝑦 ) ∈ ℋ ) | |
| 15 | normcl | ⊢ ( ( 𝑥 −ℎ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ∈ ℝ ) | |
| 16 | 15 | recnd | ⊢ ( ( 𝑥 −ℎ 𝑦 ) ∈ ℋ → ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ∈ ℂ ) |
| 17 | 14 16 | syl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ∈ ℂ ) |
| 18 | 17 | sqcld | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ∈ ℂ ) |
| 19 | 13 18 | addcomd | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) ) ) |
| 20 | 8 19 | eqtr3d | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( ( ( normℎ ‘ ( 𝑥 −ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) ) ) |
| 21 | normcl | ⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) | |
| 22 | 21 | recnd | ⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℂ ) |
| 23 | 22 | sqcld | ⊢ ( 𝑥 ∈ ℋ → ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ∈ ℂ ) |
| 24 | normcl | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) | |
| 25 | 24 | recnd | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℂ ) |
| 26 | 25 | sqcld | ⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ∈ ℂ ) |
| 27 | 2cn | ⊢ 2 ∈ ℂ | |
| 28 | adddi | ⊢ ( ( 2 ∈ ℂ ∧ ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ∈ ℂ ∧ ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) = ( ( 2 · ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) | |
| 29 | 27 28 | mp3an1 | ⊢ ( ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ∈ ℂ ∧ ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ∈ ℂ ) → ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) = ( ( 2 · ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 30 | 23 26 29 | syl2an | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) = ( ( 2 · ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 31 | 4 20 30 | 3eqtr4d | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 32 | 31 | rgen2 | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) |
| 33 | hilablo | ⊢ +ℎ ∈ AbelOp | |
| 34 | 33 | elexi | ⊢ +ℎ ∈ V |
| 35 | hvmulex | ⊢ ·ℎ ∈ V | |
| 36 | normf | ⊢ normℎ : ℋ ⟶ ℝ | |
| 37 | ax-hilex | ⊢ ℋ ∈ V | |
| 38 | fex | ⊢ ( ( normℎ : ℋ ⟶ ℝ ∧ ℋ ∈ V ) → normℎ ∈ V ) | |
| 39 | 36 37 38 | mp2an | ⊢ normℎ ∈ V |
| 40 | 1 | eleq1i | ⊢ ( 𝑈 ∈ CPreHilOLD ↔ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ CPreHilOLD ) |
| 41 | ablogrpo | ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp ) | |
| 42 | 33 41 | ax-mp | ⊢ +ℎ ∈ GrpOp |
| 43 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 44 | 43 | fdmi | ⊢ dom +ℎ = ( ℋ × ℋ ) |
| 45 | 42 44 | grporn | ⊢ ℋ = ran +ℎ |
| 46 | 45 | isphg | ⊢ ( ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V ) → ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ CPreHilOLD ↔ ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 47 | 40 46 | bitrid | ⊢ ( ( +ℎ ∈ V ∧ ·ℎ ∈ V ∧ normℎ ∈ V ) → ( 𝑈 ∈ CPreHilOLD ↔ ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 48 | 34 35 39 47 | mp3an | ⊢ ( 𝑈 ∈ CPreHilOLD ↔ ( 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝑥 +ℎ ( - 1 ·ℎ 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( normℎ ‘ 𝑥 ) ↑ 2 ) + ( ( normℎ ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 49 | 3 32 48 | mpbir2an | ⊢ 𝑈 ∈ CPreHilOLD |