This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of SH is a subspace. (Contributed by NM, 6-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsst.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhsst.2 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | ||
| Assertion | hhsst | ⊢ ( 𝐻 ∈ Sℋ → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsst.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhsst.2 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 3 | 2 | hhssnvt | ⊢ ( 𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec ) |
| 4 | resss | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ | |
| 5 | resss | ⊢ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ⊆ ·ℎ | |
| 6 | resss | ⊢ ( normℎ ↾ 𝐻 ) ⊆ normℎ | |
| 7 | 4 5 6 | 3pm3.2i | ⊢ ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ ∧ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ⊆ ·ℎ ∧ ( normℎ ↾ 𝐻 ) ⊆ normℎ ) |
| 8 | 3 7 | jctir | ⊢ ( 𝐻 ∈ Sℋ → ( 𝑊 ∈ NrmCVec ∧ ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ ∧ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ⊆ ·ℎ ∧ ( normℎ ↾ 𝐻 ) ⊆ normℎ ) ) ) |
| 9 | 1 | hhnv | ⊢ 𝑈 ∈ NrmCVec |
| 10 | 1 | hhva | ⊢ +ℎ = ( +𝑣 ‘ 𝑈 ) |
| 11 | 2 | hhssva | ⊢ ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( +𝑣 ‘ 𝑊 ) |
| 12 | 1 | hhsm | ⊢ ·ℎ = ( ·𝑠OLD ‘ 𝑈 ) |
| 13 | 2 | hhsssm | ⊢ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) = ( ·𝑠OLD ‘ 𝑊 ) |
| 14 | 1 | hhnm | ⊢ normℎ = ( normCV ‘ 𝑈 ) |
| 15 | 2 | hhssnm | ⊢ ( normℎ ↾ 𝐻 ) = ( normCV ‘ 𝑊 ) |
| 16 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 17 | 10 11 12 13 14 15 16 | isssp | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ ∧ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ⊆ ·ℎ ∧ ( normℎ ↾ 𝐻 ) ⊆ normℎ ) ) ) ) |
| 18 | 9 17 | ax-mp | ⊢ ( 𝑊 ∈ ( SubSp ‘ 𝑈 ) ↔ ( 𝑊 ∈ NrmCVec ∧ ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ +ℎ ∧ ( ·ℎ ↾ ( ℂ × 𝐻 ) ) ⊆ ·ℎ ∧ ( normℎ ↾ 𝐻 ) ⊆ normℎ ) ) ) |
| 19 | 8 18 | sylibr | ⊢ ( 𝐻 ∈ Sℋ → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |