This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in orthogonal complement of H subspace. (Contributed by NM, 9-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shocel | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shss | ⊢ ( 𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ ) | |
| 2 | ocel | ⊢ ( 𝐻 ⊆ ℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ↔ ( 𝐴 ∈ ℋ ∧ ∀ 𝑥 ∈ 𝐻 ( 𝐴 ·ih 𝑥 ) = 0 ) ) ) |