This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prefixes of two words are equal iff they have the same length and the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018) (Revised by AV, 4-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxeq | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ( 𝑊 prefix 𝑀 ) = ( 𝑈 prefix 𝑁 ) ↔ ( 𝑀 = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pfxcl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝑀 ) ∈ Word 𝑉 ) | |
| 2 | pfxcl | ⊢ ( 𝑈 ∈ Word 𝑉 → ( 𝑈 prefix 𝑁 ) ∈ Word 𝑉 ) | |
| 3 | eqwrd | ⊢ ( ( ( 𝑊 prefix 𝑀 ) ∈ Word 𝑉 ∧ ( 𝑈 prefix 𝑁 ) ∈ Word 𝑉 ) → ( ( 𝑊 prefix 𝑀 ) = ( 𝑈 prefix 𝑁 ) ↔ ( ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) = ( ♯ ‘ ( 𝑈 prefix 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → ( ( 𝑊 prefix 𝑀 ) = ( 𝑈 prefix 𝑁 ) ↔ ( ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) = ( ♯ ‘ ( 𝑈 prefix 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) ) ) ) |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ( 𝑊 prefix 𝑀 ) = ( 𝑈 prefix 𝑁 ) ↔ ( ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) = ( ♯ ‘ ( 𝑈 prefix 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) ) ) ) |
| 6 | simp2l | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 7 | simpl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) | |
| 8 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 10 | simpl | ⊢ ( ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) → 𝑀 ≤ ( ♯ ‘ 𝑊 ) ) | |
| 11 | 7 9 10 | 3anim123i | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( 𝑀 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 12 | elfz2nn0 | ⊢ ( 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑀 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 14 | pfxlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) = 𝑀 ) | |
| 15 | 6 13 14 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) = 𝑀 ) |
| 16 | simp2r | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → 𝑈 ∈ Word 𝑉 ) | |
| 17 | simpr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 18 | lencl | ⊢ ( 𝑈 ∈ Word 𝑉 → ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑈 ) ∈ ℕ0 ) |
| 20 | simpr | ⊢ ( ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) → 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) | |
| 21 | 17 19 20 | 3anim123i | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑈 ) ∈ ℕ0 ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) |
| 22 | elfz2nn0 | ⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑈 ) ) ↔ ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑈 ) ∈ ℕ0 ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) | |
| 23 | 21 22 | sylibr | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑈 ) ) ) |
| 24 | pfxlen | ⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑈 ) ) ) → ( ♯ ‘ ( 𝑈 prefix 𝑁 ) ) = 𝑁 ) | |
| 25 | 16 23 24 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ♯ ‘ ( 𝑈 prefix 𝑁 ) ) = 𝑁 ) |
| 26 | 15 25 | eqeq12d | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) = ( ♯ ‘ ( 𝑈 prefix 𝑁 ) ) ↔ 𝑀 = 𝑁 ) ) |
| 27 | 26 | anbi1d | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ( ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) = ( ♯ ‘ ( 𝑈 prefix 𝑁 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) ) ↔ ( 𝑀 = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) ) ) ) |
| 28 | 15 | adantr | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) = 𝑀 ) |
| 29 | 28 | oveq2d | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) = ( 0 ..^ 𝑀 ) ) |
| 30 | 29 | raleqdv | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) ) ) |
| 31 | 6 | ad2antrr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑊 ∈ Word 𝑉 ) |
| 32 | 13 | ad2antrr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 33 | simpr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑀 ) ) | |
| 34 | pfxfv | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) | |
| 35 | 31 32 33 34 | syl3anc | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) |
| 36 | 16 | ad2antrr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑈 ∈ Word 𝑉 ) |
| 37 | 23 | ad2antrr | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑈 ) ) ) |
| 38 | oveq2 | ⊢ ( 𝑀 = 𝑁 → ( 0 ..^ 𝑀 ) = ( 0 ..^ 𝑁 ) ) | |
| 39 | 38 | eleq2d | ⊢ ( 𝑀 = 𝑁 → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 40 | 39 | adantl | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) → ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↔ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 41 | 40 | biimpa | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑖 ∈ ( 0 ..^ 𝑁 ) ) |
| 42 | pfxfv | ⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑈 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) | |
| 43 | 36 37 41 42 | syl3anc | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) |
| 44 | 35 43 | eqeq12d | ⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) ↔ ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 45 | 44 | ralbidva | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 46 | 30 45 | bitrd | ⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) ∧ 𝑀 = 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) |
| 47 | 46 | pm5.32da | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ( 𝑀 = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 prefix 𝑀 ) ) ) ( ( 𝑊 prefix 𝑀 ) ‘ 𝑖 ) = ( ( 𝑈 prefix 𝑁 ) ‘ 𝑖 ) ) ↔ ( 𝑀 = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 48 | 5 27 47 | 3bitrd | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ( 𝑊 prefix 𝑀 ) = ( 𝑈 prefix 𝑁 ) ↔ ( 𝑀 = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) ) |
| 49 | 48 | 3com12 | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑈 ) ) ) → ( ( 𝑊 prefix 𝑀 ) = ( 𝑈 prefix 𝑁 ) ↔ ( 𝑀 = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) ( 𝑊 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) ) ) |