This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018) (Revised by AV, 6-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxsuff1eqwrdeq | |- ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) -> ( W = U <-> ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 1 ) ) = ( U prefix ( ( # ` W ) - 1 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgt0n0 | |- ( ( W e. Word V /\ 0 < ( # ` W ) ) -> W =/= (/) ) |
|
| 2 | lennncl | |- ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
|
| 3 | 1 2 | syldan | |- ( ( W e. Word V /\ 0 < ( # ` W ) ) -> ( # ` W ) e. NN ) |
| 4 | 3 | 3adant2 | |- ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) -> ( # ` W ) e. NN ) |
| 5 | fzo0end | |- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 7 | pfxsuffeqwrdeq | |- ( ( W e. Word V /\ U e. Word V /\ ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W = U <-> ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 1 ) ) = ( U prefix ( ( # ` W ) - 1 ) ) /\ ( W substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) ) ) ) ) |
|
| 8 | 6 7 | syld3an3 | |- ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) -> ( W = U <-> ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 1 ) ) = ( U prefix ( ( # ` W ) - 1 ) ) /\ ( W substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) ) ) ) ) |
| 9 | hashneq0 | |- ( W e. Word V -> ( 0 < ( # ` W ) <-> W =/= (/) ) ) |
|
| 10 | 9 | biimpd | |- ( W e. Word V -> ( 0 < ( # ` W ) -> W =/= (/) ) ) |
| 11 | 10 | imdistani | |- ( ( W e. Word V /\ 0 < ( # ` W ) ) -> ( W e. Word V /\ W =/= (/) ) ) |
| 12 | 11 | 3adant2 | |- ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) -> ( W e. Word V /\ W =/= (/) ) ) |
| 13 | 12 | adantr | |- ( ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( W e. Word V /\ W =/= (/) ) ) |
| 14 | swrdlsw | |- ( ( W e. Word V /\ W =/= (/) ) -> ( W substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = <" ( lastS ` W ) "> ) |
|
| 15 | 13 14 | syl | |- ( ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( W substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = <" ( lastS ` W ) "> ) |
| 16 | breq2 | |- ( ( # ` W ) = ( # ` U ) -> ( 0 < ( # ` W ) <-> 0 < ( # ` U ) ) ) |
|
| 17 | 16 | 3anbi3d | |- ( ( # ` W ) = ( # ` U ) -> ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) <-> ( W e. Word V /\ U e. Word V /\ 0 < ( # ` U ) ) ) ) |
| 18 | hashneq0 | |- ( U e. Word V -> ( 0 < ( # ` U ) <-> U =/= (/) ) ) |
|
| 19 | 18 | biimpd | |- ( U e. Word V -> ( 0 < ( # ` U ) -> U =/= (/) ) ) |
| 20 | 19 | imdistani | |- ( ( U e. Word V /\ 0 < ( # ` U ) ) -> ( U e. Word V /\ U =/= (/) ) ) |
| 21 | 20 | 3adant1 | |- ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` U ) ) -> ( U e. Word V /\ U =/= (/) ) ) |
| 22 | swrdlsw | |- ( ( U e. Word V /\ U =/= (/) ) -> ( U substr <. ( ( # ` U ) - 1 ) , ( # ` U ) >. ) = <" ( lastS ` U ) "> ) |
|
| 23 | 21 22 | syl | |- ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` U ) ) -> ( U substr <. ( ( # ` U ) - 1 ) , ( # ` U ) >. ) = <" ( lastS ` U ) "> ) |
| 24 | 17 23 | biimtrdi | |- ( ( # ` W ) = ( # ` U ) -> ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) -> ( U substr <. ( ( # ` U ) - 1 ) , ( # ` U ) >. ) = <" ( lastS ` U ) "> ) ) |
| 25 | 24 | impcom | |- ( ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( U substr <. ( ( # ` U ) - 1 ) , ( # ` U ) >. ) = <" ( lastS ` U ) "> ) |
| 26 | oveq1 | |- ( ( # ` W ) = ( # ` U ) -> ( ( # ` W ) - 1 ) = ( ( # ` U ) - 1 ) ) |
|
| 27 | id | |- ( ( # ` W ) = ( # ` U ) -> ( # ` W ) = ( # ` U ) ) |
|
| 28 | 26 27 | opeq12d | |- ( ( # ` W ) = ( # ` U ) -> <. ( ( # ` W ) - 1 ) , ( # ` W ) >. = <. ( ( # ` U ) - 1 ) , ( # ` U ) >. ) |
| 29 | 28 | oveq2d | |- ( ( # ` W ) = ( # ` U ) -> ( U substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` U ) - 1 ) , ( # ` U ) >. ) ) |
| 30 | 29 | eqeq1d | |- ( ( # ` W ) = ( # ` U ) -> ( ( U substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = <" ( lastS ` U ) "> <-> ( U substr <. ( ( # ` U ) - 1 ) , ( # ` U ) >. ) = <" ( lastS ` U ) "> ) ) |
| 31 | 30 | adantl | |- ( ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( ( U substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = <" ( lastS ` U ) "> <-> ( U substr <. ( ( # ` U ) - 1 ) , ( # ` U ) >. ) = <" ( lastS ` U ) "> ) ) |
| 32 | 25 31 | mpbird | |- ( ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( U substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = <" ( lastS ` U ) "> ) |
| 33 | 15 32 | eqeq12d | |- ( ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( ( W substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) <-> <" ( lastS ` W ) "> = <" ( lastS ` U ) "> ) ) |
| 34 | fvexd | |- ( ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( lastS ` W ) e. _V ) |
|
| 35 | fvex | |- ( lastS ` U ) e. _V |
|
| 36 | s111 | |- ( ( ( lastS ` W ) e. _V /\ ( lastS ` U ) e. _V ) -> ( <" ( lastS ` W ) "> = <" ( lastS ` U ) "> <-> ( lastS ` W ) = ( lastS ` U ) ) ) |
|
| 37 | 34 35 36 | sylancl | |- ( ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( <" ( lastS ` W ) "> = <" ( lastS ` U ) "> <-> ( lastS ` W ) = ( lastS ` U ) ) ) |
| 38 | 33 37 | bitrd | |- ( ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( ( W substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) <-> ( lastS ` W ) = ( lastS ` U ) ) ) |
| 39 | 38 | anbi2d | |- ( ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) /\ ( # ` W ) = ( # ` U ) ) -> ( ( ( W prefix ( ( # ` W ) - 1 ) ) = ( U prefix ( ( # ` W ) - 1 ) ) /\ ( W substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) ) <-> ( ( W prefix ( ( # ` W ) - 1 ) ) = ( U prefix ( ( # ` W ) - 1 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) |
| 40 | 39 | pm5.32da | |- ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) -> ( ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 1 ) ) = ( U prefix ( ( # ` W ) - 1 ) ) /\ ( W substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) = ( U substr <. ( ( # ` W ) - 1 ) , ( # ` W ) >. ) ) ) <-> ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 1 ) ) = ( U prefix ( ( # ` W ) - 1 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) ) |
| 41 | 8 40 | bitrd | |- ( ( W e. Word V /\ U e. Word V /\ 0 < ( # ` W ) ) -> ( W = U <-> ( ( # ` W ) = ( # ` U ) /\ ( ( W prefix ( ( # ` W ) - 1 ) ) = ( U prefix ( ( # ` W ) - 1 ) ) /\ ( lastS ` W ) = ( lastS ` U ) ) ) ) ) |