This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashneq0 | ⊢ ( 𝐴 ∈ 𝑉 → ( 0 < ( ♯ ‘ 𝐴 ) ↔ 𝐴 ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnn0pnf | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) ) | |
| 2 | nn0re | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | nn0ge0 | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → 0 ≤ ( ♯ ‘ 𝐴 ) ) | |
| 4 | ne0gt0 | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( ♯ ‘ 𝐴 ) ) → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 0 < ( ♯ ‘ 𝐴 ) ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 0 < ( ♯ ‘ 𝐴 ) ) ) |
| 6 | 5 | bicomd | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
| 7 | breq2 | ⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( 0 < ( ♯ ‘ 𝐴 ) ↔ 0 < +∞ ) ) | |
| 8 | 0ltpnf | ⊢ 0 < +∞ | |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | renepnf | ⊢ ( 0 ∈ ℝ → 0 ≠ +∞ ) | |
| 11 | 9 10 | ax-mp | ⊢ 0 ≠ +∞ |
| 12 | 11 | necomi | ⊢ +∞ ≠ 0 |
| 13 | 8 12 | 2th | ⊢ ( 0 < +∞ ↔ +∞ ≠ 0 ) |
| 14 | neeq1 | ⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ +∞ ≠ 0 ) ) | |
| 15 | 13 14 | bitr4id | ⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( 0 < +∞ ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
| 16 | 7 15 | bitrd | ⊢ ( ( ♯ ‘ 𝐴 ) = +∞ → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
| 17 | 6 16 | jaoi | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝐴 ) = +∞ ) → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
| 18 | 1 17 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 0 < ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ≠ 0 ) ) |
| 19 | hasheq0 | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) | |
| 20 | 19 | necon3bid | ⊢ ( 𝐴 ∈ 𝑉 → ( ( ♯ ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ ∅ ) ) |
| 21 | 18 20 | bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( 0 < ( ♯ ‘ 𝐴 ) ↔ 𝐴 ≠ ∅ ) ) |