This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcqdiv | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℚ ) | |
| 2 | qcn | ⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
| 4 | simp3l | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℚ ) | |
| 5 | qcn | ⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
| 7 | simp3r | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) | |
| 8 | 3 6 7 | divcan1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) · 𝐵 ) = 𝐴 ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
| 10 | simp1 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝑃 ∈ ℙ ) | |
| 11 | qdivcl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) | |
| 12 | 1 4 7 11 | syl3anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
| 13 | simp2r | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → 𝐴 ≠ 0 ) | |
| 14 | 3 6 13 7 | divne0d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ≠ 0 ) |
| 15 | pcqmul | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 / 𝐵 ) ∈ ℚ ∧ ( 𝐴 / 𝐵 ) ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) + ( 𝑃 pCnt 𝐵 ) ) ) | |
| 16 | 10 12 14 4 7 15 | syl122anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( ( 𝐴 / 𝐵 ) · 𝐵 ) ) = ( ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) + ( 𝑃 pCnt 𝐵 ) ) ) |
| 17 | 9 16 | eqtr3d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) = ( ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) + ( 𝑃 pCnt 𝐵 ) ) ) |
| 18 | 17 | oveq1d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( ( ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) + ( 𝑃 pCnt 𝐵 ) ) − ( 𝑃 pCnt 𝐵 ) ) ) |
| 19 | pcqcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 / 𝐵 ) ∈ ℚ ∧ ( 𝐴 / 𝐵 ) ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) ∈ ℤ ) | |
| 20 | 10 12 14 19 | syl12anc | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) ∈ ℤ ) |
| 21 | 20 | zcnd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) ∈ ℂ ) |
| 22 | pcqcl | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℤ ) | |
| 23 | 22 | 3adant2 | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℤ ) |
| 24 | 23 | zcnd | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℂ ) |
| 25 | 21 24 | pncand | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) + ( 𝑃 pCnt 𝐵 ) ) − ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) ) |
| 26 | 18 25 | eqtr2d | ⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) |