This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | uncom | ⊢ ( 𝑋 ∪ 𝑌 ) = ( 𝑌 ∪ 𝑋 ) | |
| 4 | 3 | a1i | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 ∪ 𝑌 ) = ( 𝑌 ∪ 𝑋 ) ) |
| 5 | simpl1 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝐾 ∈ Lat ) | |
| 6 | simpl2 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑋 ⊆ 𝐴 ) | |
| 7 | simprl | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑞 ∈ 𝑋 ) | |
| 8 | 6 7 | sseldd | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑞 ∈ 𝐴 ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 10 | 9 1 | atbase | ⊢ ( 𝑞 ∈ 𝐴 → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
| 11 | 8 10 | syl | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
| 12 | simpl3 | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑌 ⊆ 𝐴 ) | |
| 13 | simprr | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑟 ∈ 𝑌 ) | |
| 14 | 12 13 | sseldd | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑟 ∈ 𝐴 ) |
| 15 | 9 1 | atbase | ⊢ ( 𝑟 ∈ 𝐴 → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
| 17 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 18 | 9 17 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑞 ∈ ( Base ‘ 𝐾 ) ∧ 𝑟 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) = ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) |
| 19 | 5 11 16 18 | syl3anc | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) = ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) |
| 20 | 19 | breq2d | ⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) ) |
| 21 | 20 | 2rexbidva | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) ) |
| 22 | rexcom | ⊢ ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ↔ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) | |
| 23 | 21 22 | bitrdi | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) ) |
| 24 | 23 | rabbidv | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } ) |
| 25 | 4 24 | uneq12d | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) = ( ( 𝑌 ∪ 𝑋 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } ) ) |
| 26 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 27 | 26 17 1 2 | paddval | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) ) |
| 28 | 26 17 1 2 | paddval | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑌 + 𝑋 ) = ( ( 𝑌 ∪ 𝑋 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } ) ) |
| 29 | 28 | 3com23 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑌 + 𝑋 ) = ( ( 𝑌 ∪ 𝑋 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } ) ) |
| 30 | 25 27 29 | 3eqtr4d | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |