This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projective subspace sum is a set of atoms. (Contributed by NM, 3-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddssat | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 5 | 3 4 1 2 | paddval | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) ) |
| 6 | unss | ⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ↔ ( 𝑋 ∪ 𝑌 ) ⊆ 𝐴 ) | |
| 7 | 6 | biimpi | ⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 ∪ 𝑌 ) ⊆ 𝐴 ) |
| 8 | ssrab2 | ⊢ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ⊆ 𝐴 | |
| 9 | 7 8 | jctir | ⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝑋 ∪ 𝑌 ) ⊆ 𝐴 ∧ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ⊆ 𝐴 ) ) |
| 10 | unss | ⊢ ( ( ( 𝑋 ∪ 𝑌 ) ⊆ 𝐴 ∧ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ⊆ 𝐴 ) ↔ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) ⊆ 𝐴 ) | |
| 11 | 9 10 | sylib | ⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) ⊆ 𝐴 ) |
| 12 | 11 | 3adant1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) ⊆ 𝐴 ) |
| 13 | 5 12 | eqsstrd | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) ⊆ 𝐴 ) |