This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddval | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 5 | biid | ⊢ ( 𝐾 ∈ 𝐵 ↔ 𝐾 ∈ 𝐵 ) | |
| 6 | 3 | fvexi | ⊢ 𝐴 ∈ V |
| 7 | 6 | elpw2 | ⊢ ( 𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴 ) |
| 8 | 6 | elpw2 | ⊢ ( 𝑌 ∈ 𝒫 𝐴 ↔ 𝑌 ⊆ 𝐴 ) |
| 9 | 1 2 3 4 | paddfval | ⊢ ( 𝐾 ∈ 𝐵 → + = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 10 | 9 | oveqd | ⊢ ( 𝐾 ∈ 𝐵 → ( 𝑋 + 𝑌 ) = ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) ) |
| 12 | simpl | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → 𝑋 ∈ 𝒫 𝐴 ) | |
| 13 | simpr | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → 𝑌 ∈ 𝒫 𝐴 ) | |
| 14 | unexg | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∪ 𝑌 ) ∈ V ) | |
| 15 | 6 | rabex | ⊢ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ∈ V |
| 16 | unexg | ⊢ ( ( ( 𝑋 ∪ 𝑌 ) ∈ V ∧ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ∈ V ) → ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) | |
| 17 | 14 15 16 | sylancl | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) |
| 18 | 12 13 17 | 3jca | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) ) |
| 19 | 18 | 3adant1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) ) |
| 20 | uneq1 | ⊢ ( 𝑚 = 𝑋 → ( 𝑚 ∪ 𝑛 ) = ( 𝑋 ∪ 𝑛 ) ) | |
| 21 | rexeq | ⊢ ( 𝑚 = 𝑋 → ( ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) | |
| 22 | 21 | rabbidv | ⊢ ( 𝑚 = 𝑋 → { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) |
| 23 | 20 22 | uneq12d | ⊢ ( 𝑚 = 𝑋 → ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) = ( ( 𝑋 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 24 | uneq2 | ⊢ ( 𝑛 = 𝑌 → ( 𝑋 ∪ 𝑛 ) = ( 𝑋 ∪ 𝑌 ) ) | |
| 25 | rexeq | ⊢ ( 𝑛 = 𝑌 → ( ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) | |
| 26 | 25 | rexbidv | ⊢ ( 𝑛 = 𝑌 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 27 | 26 | rabbidv | ⊢ ( 𝑛 = 𝑌 → { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) |
| 28 | 24 27 | uneq12d | ⊢ ( 𝑛 = 𝑌 → ( ( 𝑋 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 29 | eqid | ⊢ ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) | |
| 30 | 23 28 29 | ovmpog | ⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) → ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 31 | 19 30 | syl | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 32 | 11 31 | eqtrd | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 33 | 5 7 8 32 | syl3anbr | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |