This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cancellation law for division. ( divcan3 analog.) (Contributed by Mario Carneiro, 2-Jul-2014) (Revised by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrass.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvrass.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| dvrass.d | ⊢ / = ( /r ‘ 𝑅 ) | ||
| dvrass.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | dvrcan3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) / 𝑌 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrass.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvrass.o | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | dvrass.d | ⊢ / = ( /r ‘ 𝑅 ) | |
| 4 | dvrass.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑅 ∈ Ring ) | |
| 6 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑋 ∈ 𝐵 ) | |
| 7 | 1 2 | unitcl | ⊢ ( 𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵 ) |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝐵 ) |
| 9 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → 𝑌 ∈ 𝑈 ) | |
| 10 | 1 2 3 4 | dvrass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) ) → ( ( 𝑋 · 𝑌 ) / 𝑌 ) = ( 𝑋 · ( 𝑌 / 𝑌 ) ) ) |
| 11 | 5 6 8 9 10 | syl13anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) / 𝑌 ) = ( 𝑋 · ( 𝑌 / 𝑌 ) ) ) |
| 12 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 13 | 2 3 12 | dvrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 / 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 14 | 13 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑌 / 𝑌 ) = ( 1r ‘ 𝑅 ) ) |
| 15 | 14 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · ( 𝑌 / 𝑌 ) ) = ( 𝑋 · ( 1r ‘ 𝑅 ) ) ) |
| 16 | 1 4 12 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( 𝑋 · ( 1r ‘ 𝑅 ) ) = 𝑋 ) |
| 18 | 11 15 17 | 3eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ) → ( ( 𝑋 · 𝑌 ) / 𝑌 ) = 𝑋 ) |