This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orngmullt.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| orngmullt.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| orngmullt.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| orngmullt.l | ⊢ < = ( lt ‘ 𝑅 ) | ||
| orngmullt.1 | ⊢ ( 𝜑 → 𝑅 ∈ oRing ) | ||
| orngmullt.4 | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | ||
| orngmullt.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| orngmullt.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| orngmullt.x | ⊢ ( 𝜑 → 0 < 𝑋 ) | ||
| orngmullt.y | ⊢ ( 𝜑 → 0 < 𝑌 ) | ||
| Assertion | orngmullt | ⊢ ( 𝜑 → 0 < ( 𝑋 · 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orngmullt.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | orngmullt.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | orngmullt.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | orngmullt.l | ⊢ < = ( lt ‘ 𝑅 ) | |
| 5 | orngmullt.1 | ⊢ ( 𝜑 → 𝑅 ∈ oRing ) | |
| 6 | orngmullt.4 | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | |
| 7 | orngmullt.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | orngmullt.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | orngmullt.x | ⊢ ( 𝜑 → 0 < 𝑋 ) | |
| 10 | orngmullt.y | ⊢ ( 𝜑 → 0 < 𝑌 ) | |
| 11 | orngring | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) | |
| 12 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 13 | 1 3 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
| 14 | 5 11 12 13 | 4syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 15 | eqid | ⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) | |
| 16 | 15 4 | pltval | ⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝑅 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
| 17 | 5 14 7 16 | syl3anc | ⊢ ( 𝜑 → ( 0 < 𝑋 ↔ ( 0 ( le ‘ 𝑅 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) ) |
| 18 | 9 17 | mpbid | ⊢ ( 𝜑 → ( 0 ( le ‘ 𝑅 ) 𝑋 ∧ 0 ≠ 𝑋 ) ) |
| 19 | 18 | simpld | ⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) 𝑋 ) |
| 20 | 15 4 | pltval | ⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 < 𝑌 ↔ ( 0 ( le ‘ 𝑅 ) 𝑌 ∧ 0 ≠ 𝑌 ) ) ) |
| 21 | 5 14 8 20 | syl3anc | ⊢ ( 𝜑 → ( 0 < 𝑌 ↔ ( 0 ( le ‘ 𝑅 ) 𝑌 ∧ 0 ≠ 𝑌 ) ) ) |
| 22 | 10 21 | mpbid | ⊢ ( 𝜑 → ( 0 ( le ‘ 𝑅 ) 𝑌 ∧ 0 ≠ 𝑌 ) ) |
| 23 | 22 | simpld | ⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) 𝑌 ) |
| 24 | 1 15 3 2 | orngmul | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ( le ‘ 𝑅 ) 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ( le ‘ 𝑅 ) 𝑌 ) ) → 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
| 25 | 5 7 19 8 23 24 | syl122anc | ⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ) |
| 26 | 18 | simprd | ⊢ ( 𝜑 → 0 ≠ 𝑋 ) |
| 27 | 26 | necomd | ⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 28 | 22 | simprd | ⊢ ( 𝜑 → 0 ≠ 𝑌 ) |
| 29 | 28 | necomd | ⊢ ( 𝜑 → 𝑌 ≠ 0 ) |
| 30 | 1 3 2 6 7 8 | drngmulne0 | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) ≠ 0 ↔ ( 𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ) ) |
| 31 | 27 29 30 | mpbir2and | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ≠ 0 ) |
| 32 | 31 | necomd | ⊢ ( 𝜑 → 0 ≠ ( 𝑋 · 𝑌 ) ) |
| 33 | 5 11 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 34 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 35 | 33 7 8 34 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 36 | 15 4 | pltval | ⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ ( 𝑋 · 𝑌 ) ∈ 𝐵 ) → ( 0 < ( 𝑋 · 𝑌 ) ↔ ( 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ∧ 0 ≠ ( 𝑋 · 𝑌 ) ) ) ) |
| 37 | 5 14 35 36 | syl3anc | ⊢ ( 𝜑 → ( 0 < ( 𝑋 · 𝑌 ) ↔ ( 0 ( le ‘ 𝑅 ) ( 𝑋 · 𝑌 ) ∧ 0 ≠ ( 𝑋 · 𝑌 ) ) ) ) |
| 38 | 25 32 37 | mpbir2and | ⊢ ( 𝜑 → 0 < ( 𝑋 · 𝑌 ) ) |