This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ornglmullt.b | |- B = ( Base ` R ) |
|
| ornglmullt.t | |- .x. = ( .r ` R ) |
||
| ornglmullt.0 | |- .0. = ( 0g ` R ) |
||
| ornglmullt.1 | |- ( ph -> R e. oRing ) |
||
| ornglmullt.2 | |- ( ph -> X e. B ) |
||
| ornglmullt.3 | |- ( ph -> Y e. B ) |
||
| ornglmullt.4 | |- ( ph -> Z e. B ) |
||
| ornglmullt.l | |- .< = ( lt ` R ) |
||
| ornglmullt.d | |- ( ph -> R e. DivRing ) |
||
| ornglmullt.5 | |- ( ph -> X .< Y ) |
||
| ornglmullt.6 | |- ( ph -> .0. .< Z ) |
||
| Assertion | orngrmullt | |- ( ph -> ( X .x. Z ) .< ( Y .x. Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ornglmullt.b | |- B = ( Base ` R ) |
|
| 2 | ornglmullt.t | |- .x. = ( .r ` R ) |
|
| 3 | ornglmullt.0 | |- .0. = ( 0g ` R ) |
|
| 4 | ornglmullt.1 | |- ( ph -> R e. oRing ) |
|
| 5 | ornglmullt.2 | |- ( ph -> X e. B ) |
|
| 6 | ornglmullt.3 | |- ( ph -> Y e. B ) |
|
| 7 | ornglmullt.4 | |- ( ph -> Z e. B ) |
|
| 8 | ornglmullt.l | |- .< = ( lt ` R ) |
|
| 9 | ornglmullt.d | |- ( ph -> R e. DivRing ) |
|
| 10 | ornglmullt.5 | |- ( ph -> X .< Y ) |
|
| 11 | ornglmullt.6 | |- ( ph -> .0. .< Z ) |
|
| 12 | eqid | |- ( le ` R ) = ( le ` R ) |
|
| 13 | 12 8 | pltle | |- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X ( le ` R ) Y ) ) |
| 14 | 13 | imp | |- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X ( le ` R ) Y ) |
| 15 | 4 5 6 10 14 | syl31anc | |- ( ph -> X ( le ` R ) Y ) |
| 16 | orngring | |- ( R e. oRing -> R e. Ring ) |
|
| 17 | 4 16 | syl | |- ( ph -> R e. Ring ) |
| 18 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 19 | 1 3 | grpidcl | |- ( R e. Grp -> .0. e. B ) |
| 20 | 17 18 19 | 3syl | |- ( ph -> .0. e. B ) |
| 21 | 12 8 | pltle | |- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. ( le ` R ) Z ) ) |
| 22 | 21 | imp | |- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. ( le ` R ) Z ) |
| 23 | 4 20 7 11 22 | syl31anc | |- ( ph -> .0. ( le ` R ) Z ) |
| 24 | 1 2 3 4 5 6 7 12 15 23 | orngrmulle | |- ( ph -> ( X .x. Z ) ( le ` R ) ( Y .x. Z ) ) |
| 25 | simpr | |- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( X .x. Z ) = ( Y .x. Z ) ) |
|
| 26 | 25 | oveq1d | |- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( ( X .x. Z ) ( /r ` R ) Z ) = ( ( Y .x. Z ) ( /r ` R ) Z ) ) |
| 27 | 8 | pltne | |- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. =/= Z ) ) |
| 28 | 27 | imp | |- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. =/= Z ) |
| 29 | 4 20 7 11 28 | syl31anc | |- ( ph -> .0. =/= Z ) |
| 30 | 29 | necomd | |- ( ph -> Z =/= .0. ) |
| 31 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 32 | 1 31 3 | drngunit | |- ( R e. DivRing -> ( Z e. ( Unit ` R ) <-> ( Z e. B /\ Z =/= .0. ) ) ) |
| 33 | 32 | biimpar | |- ( ( R e. DivRing /\ ( Z e. B /\ Z =/= .0. ) ) -> Z e. ( Unit ` R ) ) |
| 34 | 9 7 30 33 | syl12anc | |- ( ph -> Z e. ( Unit ` R ) ) |
| 35 | eqid | |- ( /r ` R ) = ( /r ` R ) |
|
| 36 | 1 31 35 2 | dvrcan3 | |- ( ( R e. Ring /\ X e. B /\ Z e. ( Unit ` R ) ) -> ( ( X .x. Z ) ( /r ` R ) Z ) = X ) |
| 37 | 17 5 34 36 | syl3anc | |- ( ph -> ( ( X .x. Z ) ( /r ` R ) Z ) = X ) |
| 38 | 37 | adantr | |- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( ( X .x. Z ) ( /r ` R ) Z ) = X ) |
| 39 | 1 31 35 2 | dvrcan3 | |- ( ( R e. Ring /\ Y e. B /\ Z e. ( Unit ` R ) ) -> ( ( Y .x. Z ) ( /r ` R ) Z ) = Y ) |
| 40 | 17 6 34 39 | syl3anc | |- ( ph -> ( ( Y .x. Z ) ( /r ` R ) Z ) = Y ) |
| 41 | 40 | adantr | |- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> ( ( Y .x. Z ) ( /r ` R ) Z ) = Y ) |
| 42 | 26 38 41 | 3eqtr3d | |- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> X = Y ) |
| 43 | 8 | pltne | |- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X =/= Y ) ) |
| 44 | 43 | imp | |- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X =/= Y ) |
| 45 | 4 5 6 10 44 | syl31anc | |- ( ph -> X =/= Y ) |
| 46 | 45 | adantr | |- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> X =/= Y ) |
| 47 | 46 | neneqd | |- ( ( ph /\ ( X .x. Z ) = ( Y .x. Z ) ) -> -. X = Y ) |
| 48 | 42 47 | pm2.65da | |- ( ph -> -. ( X .x. Z ) = ( Y .x. Z ) ) |
| 49 | 48 | neqned | |- ( ph -> ( X .x. Z ) =/= ( Y .x. Z ) ) |
| 50 | 1 2 | ringcl | |- ( ( R e. Ring /\ X e. B /\ Z e. B ) -> ( X .x. Z ) e. B ) |
| 51 | 17 5 7 50 | syl3anc | |- ( ph -> ( X .x. Z ) e. B ) |
| 52 | 1 2 | ringcl | |- ( ( R e. Ring /\ Y e. B /\ Z e. B ) -> ( Y .x. Z ) e. B ) |
| 53 | 17 6 7 52 | syl3anc | |- ( ph -> ( Y .x. Z ) e. B ) |
| 54 | 12 8 | pltval | |- ( ( R e. oRing /\ ( X .x. Z ) e. B /\ ( Y .x. Z ) e. B ) -> ( ( X .x. Z ) .< ( Y .x. Z ) <-> ( ( X .x. Z ) ( le ` R ) ( Y .x. Z ) /\ ( X .x. Z ) =/= ( Y .x. Z ) ) ) ) |
| 55 | 4 51 53 54 | syl3anc | |- ( ph -> ( ( X .x. Z ) .< ( Y .x. Z ) <-> ( ( X .x. Z ) ( le ` R ) ( Y .x. Z ) /\ ( X .x. Z ) =/= ( Y .x. Z ) ) ) ) |
| 56 | 24 49 55 | mpbir2and | |- ( ph -> ( X .x. Z ) .< ( Y .x. Z ) ) |