This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orngmullt.b | ||
| orngmullt.t | |||
| orngmullt.0 | |||
| orngmullt.l | |||
| orngmullt.1 | |||
| orngmullt.4 | |||
| orngmullt.2 | |||
| orngmullt.3 | |||
| orngmullt.x | |||
| orngmullt.y | |||
| Assertion | orngmullt |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orngmullt.b | ||
| 2 | orngmullt.t | ||
| 3 | orngmullt.0 | ||
| 4 | orngmullt.l | ||
| 5 | orngmullt.1 | ||
| 6 | orngmullt.4 | ||
| 7 | orngmullt.2 | ||
| 8 | orngmullt.3 | ||
| 9 | orngmullt.x | ||
| 10 | orngmullt.y | ||
| 11 | orngring | ||
| 12 | ringgrp | ||
| 13 | 1 3 | grpidcl | |
| 14 | 5 11 12 13 | 4syl | |
| 15 | eqid | ||
| 16 | 15 4 | pltval | |
| 17 | 5 14 7 16 | syl3anc | |
| 18 | 9 17 | mpbid | |
| 19 | 18 | simpld | |
| 20 | 15 4 | pltval | |
| 21 | 5 14 8 20 | syl3anc | |
| 22 | 10 21 | mpbid | |
| 23 | 22 | simpld | |
| 24 | 1 15 3 2 | orngmul | |
| 25 | 5 7 19 8 23 24 | syl122anc | |
| 26 | 18 | simprd | |
| 27 | 26 | necomd | |
| 28 | 22 | simprd | |
| 29 | 28 | necomd | |
| 30 | 1 3 2 6 7 8 | drngmulne0 | |
| 31 | 27 29 30 | mpbir2and | |
| 32 | 31 | necomd | |
| 33 | 5 11 | syl | |
| 34 | 1 2 | ringcl | |
| 35 | 33 7 8 34 | syl3anc | |
| 36 | 15 4 | pltval | |
| 37 | 5 14 35 36 | syl3anc | |
| 38 | 25 32 37 | mpbir2and |