This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orngmullt.b | |- B = ( Base ` R ) |
|
| orngmullt.t | |- .x. = ( .r ` R ) |
||
| orngmullt.0 | |- .0. = ( 0g ` R ) |
||
| orngmullt.l | |- .< = ( lt ` R ) |
||
| orngmullt.1 | |- ( ph -> R e. oRing ) |
||
| orngmullt.4 | |- ( ph -> R e. DivRing ) |
||
| orngmullt.2 | |- ( ph -> X e. B ) |
||
| orngmullt.3 | |- ( ph -> Y e. B ) |
||
| orngmullt.x | |- ( ph -> .0. .< X ) |
||
| orngmullt.y | |- ( ph -> .0. .< Y ) |
||
| Assertion | orngmullt | |- ( ph -> .0. .< ( X .x. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orngmullt.b | |- B = ( Base ` R ) |
|
| 2 | orngmullt.t | |- .x. = ( .r ` R ) |
|
| 3 | orngmullt.0 | |- .0. = ( 0g ` R ) |
|
| 4 | orngmullt.l | |- .< = ( lt ` R ) |
|
| 5 | orngmullt.1 | |- ( ph -> R e. oRing ) |
|
| 6 | orngmullt.4 | |- ( ph -> R e. DivRing ) |
|
| 7 | orngmullt.2 | |- ( ph -> X e. B ) |
|
| 8 | orngmullt.3 | |- ( ph -> Y e. B ) |
|
| 9 | orngmullt.x | |- ( ph -> .0. .< X ) |
|
| 10 | orngmullt.y | |- ( ph -> .0. .< Y ) |
|
| 11 | orngring | |- ( R e. oRing -> R e. Ring ) |
|
| 12 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 13 | 1 3 | grpidcl | |- ( R e. Grp -> .0. e. B ) |
| 14 | 5 11 12 13 | 4syl | |- ( ph -> .0. e. B ) |
| 15 | eqid | |- ( le ` R ) = ( le ` R ) |
|
| 16 | 15 4 | pltval | |- ( ( R e. oRing /\ .0. e. B /\ X e. B ) -> ( .0. .< X <-> ( .0. ( le ` R ) X /\ .0. =/= X ) ) ) |
| 17 | 5 14 7 16 | syl3anc | |- ( ph -> ( .0. .< X <-> ( .0. ( le ` R ) X /\ .0. =/= X ) ) ) |
| 18 | 9 17 | mpbid | |- ( ph -> ( .0. ( le ` R ) X /\ .0. =/= X ) ) |
| 19 | 18 | simpld | |- ( ph -> .0. ( le ` R ) X ) |
| 20 | 15 4 | pltval | |- ( ( R e. oRing /\ .0. e. B /\ Y e. B ) -> ( .0. .< Y <-> ( .0. ( le ` R ) Y /\ .0. =/= Y ) ) ) |
| 21 | 5 14 8 20 | syl3anc | |- ( ph -> ( .0. .< Y <-> ( .0. ( le ` R ) Y /\ .0. =/= Y ) ) ) |
| 22 | 10 21 | mpbid | |- ( ph -> ( .0. ( le ` R ) Y /\ .0. =/= Y ) ) |
| 23 | 22 | simpld | |- ( ph -> .0. ( le ` R ) Y ) |
| 24 | 1 15 3 2 | orngmul | |- ( ( R e. oRing /\ ( X e. B /\ .0. ( le ` R ) X ) /\ ( Y e. B /\ .0. ( le ` R ) Y ) ) -> .0. ( le ` R ) ( X .x. Y ) ) |
| 25 | 5 7 19 8 23 24 | syl122anc | |- ( ph -> .0. ( le ` R ) ( X .x. Y ) ) |
| 26 | 18 | simprd | |- ( ph -> .0. =/= X ) |
| 27 | 26 | necomd | |- ( ph -> X =/= .0. ) |
| 28 | 22 | simprd | |- ( ph -> .0. =/= Y ) |
| 29 | 28 | necomd | |- ( ph -> Y =/= .0. ) |
| 30 | 1 3 2 6 7 8 | drngmulne0 | |- ( ph -> ( ( X .x. Y ) =/= .0. <-> ( X =/= .0. /\ Y =/= .0. ) ) ) |
| 31 | 27 29 30 | mpbir2and | |- ( ph -> ( X .x. Y ) =/= .0. ) |
| 32 | 31 | necomd | |- ( ph -> .0. =/= ( X .x. Y ) ) |
| 33 | 5 11 | syl | |- ( ph -> R e. Ring ) |
| 34 | 1 2 | ringcl | |- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 35 | 33 7 8 34 | syl3anc | |- ( ph -> ( X .x. Y ) e. B ) |
| 36 | 15 4 | pltval | |- ( ( R e. oRing /\ .0. e. B /\ ( X .x. Y ) e. B ) -> ( .0. .< ( X .x. Y ) <-> ( .0. ( le ` R ) ( X .x. Y ) /\ .0. =/= ( X .x. Y ) ) ) ) |
| 37 | 5 14 35 36 | syl3anc | |- ( ph -> ( .0. .< ( X .x. Y ) <-> ( .0. ( le ` R ) ( X .x. Y ) /\ .0. =/= ( X .x. Y ) ) ) ) |
| 38 | 25 32 37 | mpbir2and | |- ( ph -> .0. .< ( X .x. Y ) ) |