This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ornglmullt.b | |- B = ( Base ` R ) |
|
| ornglmullt.t | |- .x. = ( .r ` R ) |
||
| ornglmullt.0 | |- .0. = ( 0g ` R ) |
||
| ornglmullt.1 | |- ( ph -> R e. oRing ) |
||
| ornglmullt.2 | |- ( ph -> X e. B ) |
||
| ornglmullt.3 | |- ( ph -> Y e. B ) |
||
| ornglmullt.4 | |- ( ph -> Z e. B ) |
||
| orngmulle.l | |- .<_ = ( le ` R ) |
||
| orngmulle.5 | |- ( ph -> X .<_ Y ) |
||
| orngmulle.6 | |- ( ph -> .0. .<_ Z ) |
||
| Assertion | ornglmulle | |- ( ph -> ( Z .x. X ) .<_ ( Z .x. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ornglmullt.b | |- B = ( Base ` R ) |
|
| 2 | ornglmullt.t | |- .x. = ( .r ` R ) |
|
| 3 | ornglmullt.0 | |- .0. = ( 0g ` R ) |
|
| 4 | ornglmullt.1 | |- ( ph -> R e. oRing ) |
|
| 5 | ornglmullt.2 | |- ( ph -> X e. B ) |
|
| 6 | ornglmullt.3 | |- ( ph -> Y e. B ) |
|
| 7 | ornglmullt.4 | |- ( ph -> Z e. B ) |
|
| 8 | orngmulle.l | |- .<_ = ( le ` R ) |
|
| 9 | orngmulle.5 | |- ( ph -> X .<_ Y ) |
|
| 10 | orngmulle.6 | |- ( ph -> .0. .<_ Z ) |
|
| 11 | orngogrp | |- ( R e. oRing -> R e. oGrp ) |
|
| 12 | 4 11 | syl | |- ( ph -> R e. oGrp ) |
| 13 | isogrp | |- ( R e. oGrp <-> ( R e. Grp /\ R e. oMnd ) ) |
|
| 14 | 13 | simprbi | |- ( R e. oGrp -> R e. oMnd ) |
| 15 | 12 14 | syl | |- ( ph -> R e. oMnd ) |
| 16 | orngring | |- ( R e. oRing -> R e. Ring ) |
|
| 17 | 4 16 | syl | |- ( ph -> R e. Ring ) |
| 18 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 19 | 17 18 | syl | |- ( ph -> R e. Grp ) |
| 20 | 1 3 | grpidcl | |- ( R e. Grp -> .0. e. B ) |
| 21 | 19 20 | syl | |- ( ph -> .0. e. B ) |
| 22 | 1 2 | ringcl | |- ( ( R e. Ring /\ Z e. B /\ Y e. B ) -> ( Z .x. Y ) e. B ) |
| 23 | 17 7 6 22 | syl3anc | |- ( ph -> ( Z .x. Y ) e. B ) |
| 24 | 1 2 | ringcl | |- ( ( R e. Ring /\ Z e. B /\ X e. B ) -> ( Z .x. X ) e. B ) |
| 25 | 17 7 5 24 | syl3anc | |- ( ph -> ( Z .x. X ) e. B ) |
| 26 | eqid | |- ( -g ` R ) = ( -g ` R ) |
|
| 27 | 1 26 | grpsubcl | |- ( ( R e. Grp /\ ( Z .x. Y ) e. B /\ ( Z .x. X ) e. B ) -> ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) e. B ) |
| 28 | 19 23 25 27 | syl3anc | |- ( ph -> ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) e. B ) |
| 29 | 1 26 | grpsubcl | |- ( ( R e. Grp /\ Y e. B /\ X e. B ) -> ( Y ( -g ` R ) X ) e. B ) |
| 30 | 19 6 5 29 | syl3anc | |- ( ph -> ( Y ( -g ` R ) X ) e. B ) |
| 31 | 1 3 26 | grpsubid | |- ( ( R e. Grp /\ X e. B ) -> ( X ( -g ` R ) X ) = .0. ) |
| 32 | 19 5 31 | syl2anc | |- ( ph -> ( X ( -g ` R ) X ) = .0. ) |
| 33 | 1 8 26 | ogrpsub | |- ( ( R e. oGrp /\ ( X e. B /\ Y e. B /\ X e. B ) /\ X .<_ Y ) -> ( X ( -g ` R ) X ) .<_ ( Y ( -g ` R ) X ) ) |
| 34 | 12 5 6 5 9 33 | syl131anc | |- ( ph -> ( X ( -g ` R ) X ) .<_ ( Y ( -g ` R ) X ) ) |
| 35 | 32 34 | eqbrtrrd | |- ( ph -> .0. .<_ ( Y ( -g ` R ) X ) ) |
| 36 | 1 8 3 2 | orngmul | |- ( ( R e. oRing /\ ( Z e. B /\ .0. .<_ Z ) /\ ( ( Y ( -g ` R ) X ) e. B /\ .0. .<_ ( Y ( -g ` R ) X ) ) ) -> .0. .<_ ( Z .x. ( Y ( -g ` R ) X ) ) ) |
| 37 | 4 7 10 30 35 36 | syl122anc | |- ( ph -> .0. .<_ ( Z .x. ( Y ( -g ` R ) X ) ) ) |
| 38 | 1 2 26 17 7 6 5 | ringsubdi | |- ( ph -> ( Z .x. ( Y ( -g ` R ) X ) ) = ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ) |
| 39 | 37 38 | breqtrd | |- ( ph -> .0. .<_ ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ) |
| 40 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 41 | 1 8 40 | omndadd | |- ( ( R e. oMnd /\ ( .0. e. B /\ ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) e. B /\ ( Z .x. X ) e. B ) /\ .0. .<_ ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ) -> ( .0. ( +g ` R ) ( Z .x. X ) ) .<_ ( ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ( +g ` R ) ( Z .x. X ) ) ) |
| 42 | 15 21 28 25 39 41 | syl131anc | |- ( ph -> ( .0. ( +g ` R ) ( Z .x. X ) ) .<_ ( ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ( +g ` R ) ( Z .x. X ) ) ) |
| 43 | 1 40 3 | grplid | |- ( ( R e. Grp /\ ( Z .x. X ) e. B ) -> ( .0. ( +g ` R ) ( Z .x. X ) ) = ( Z .x. X ) ) |
| 44 | 19 25 43 | syl2anc | |- ( ph -> ( .0. ( +g ` R ) ( Z .x. X ) ) = ( Z .x. X ) ) |
| 45 | 1 40 26 | grpnpcan | |- ( ( R e. Grp /\ ( Z .x. Y ) e. B /\ ( Z .x. X ) e. B ) -> ( ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ( +g ` R ) ( Z .x. X ) ) = ( Z .x. Y ) ) |
| 46 | 19 23 25 45 | syl3anc | |- ( ph -> ( ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ( +g ` R ) ( Z .x. X ) ) = ( Z .x. Y ) ) |
| 47 | 42 44 46 | 3brtr3d | |- ( ph -> ( Z .x. X ) .<_ ( Z .x. Y ) ) |