This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpsub.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ogrpsub.1 | ⊢ ≤ = ( le ‘ 𝐺 ) | ||
| ogrpsub.2 | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | ogrpsub | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 − 𝑍 ) ≤ ( 𝑌 − 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpsub.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ogrpsub.1 | ⊢ ≤ = ( le ‘ 𝐺 ) | |
| 3 | ogrpsub.2 | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | isogrp | ⊢ ( 𝐺 ∈ oGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ oMnd ) ) | |
| 5 | 4 | simprbi | ⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ oMnd ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝐺 ∈ oMnd ) |
| 7 | simp21 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ 𝐵 ) | |
| 8 | simp22 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ 𝐵 ) | |
| 9 | ogrpgrp | ⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) | |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝐺 ∈ Grp ) |
| 11 | simp23 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑍 ∈ 𝐵 ) | |
| 12 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 13 | 1 12 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 14 | 10 11 13 | syl2anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 15 | simp3 | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ≤ 𝑌 ) | |
| 16 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 17 | 1 2 16 | omndadd | ⊢ ( ( 𝐺 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ≤ ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 18 | 6 7 8 14 15 17 | syl131anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ≤ ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 19 | 1 16 12 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 20 | 7 11 19 | syl2anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 − 𝑍 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 21 | 1 16 12 3 | grpsubval | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 − 𝑍 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 22 | 8 11 21 | syl2anc | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑌 − 𝑍 ) = ( 𝑌 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 23 | 18 20 22 | 3brtr4d | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 − 𝑍 ) ≤ ( 𝑌 − 𝑍 ) ) |