This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013) (Revised by Mario Carneiro, 29-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunifi | |- ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> U. A e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epweon | |- _E We On |
|
| 2 | weso | |- ( _E We On -> _E Or On ) |
|
| 3 | 1 2 | ax-mp | |- _E Or On |
| 4 | soss | |- ( A C_ On -> ( _E Or On -> _E Or A ) ) |
|
| 5 | 3 4 | mpi | |- ( A C_ On -> _E Or A ) |
| 6 | fimax2g | |- ( ( _E Or A /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A -. x _E y ) |
|
| 7 | 5 6 | syl3an1 | |- ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> E. x e. A A. y e. A -. x _E y ) |
| 8 | ssel2 | |- ( ( A C_ On /\ y e. A ) -> y e. On ) |
|
| 9 | 8 | adantlr | |- ( ( ( A C_ On /\ x e. A ) /\ y e. A ) -> y e. On ) |
| 10 | ssel2 | |- ( ( A C_ On /\ x e. A ) -> x e. On ) |
|
| 11 | 10 | adantr | |- ( ( ( A C_ On /\ x e. A ) /\ y e. A ) -> x e. On ) |
| 12 | epel | |- ( x _E y <-> x e. y ) |
|
| 13 | 12 | notbii | |- ( -. x _E y <-> -. x e. y ) |
| 14 | ontri1 | |- ( ( y e. On /\ x e. On ) -> ( y C_ x <-> -. x e. y ) ) |
|
| 15 | 13 14 | bitr4id | |- ( ( y e. On /\ x e. On ) -> ( -. x _E y <-> y C_ x ) ) |
| 16 | 9 11 15 | syl2anc | |- ( ( ( A C_ On /\ x e. A ) /\ y e. A ) -> ( -. x _E y <-> y C_ x ) ) |
| 17 | 16 | ralbidva | |- ( ( A C_ On /\ x e. A ) -> ( A. y e. A -. x _E y <-> A. y e. A y C_ x ) ) |
| 18 | unissb | |- ( U. A C_ x <-> A. y e. A y C_ x ) |
|
| 19 | 17 18 | bitr4di | |- ( ( A C_ On /\ x e. A ) -> ( A. y e. A -. x _E y <-> U. A C_ x ) ) |
| 20 | 19 | rexbidva | |- ( A C_ On -> ( E. x e. A A. y e. A -. x _E y <-> E. x e. A U. A C_ x ) ) |
| 21 | 20 | 3ad2ant1 | |- ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> ( E. x e. A A. y e. A -. x _E y <-> E. x e. A U. A C_ x ) ) |
| 22 | 7 21 | mpbid | |- ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> E. x e. A U. A C_ x ) |
| 23 | elssuni | |- ( x e. A -> x C_ U. A ) |
|
| 24 | eqss | |- ( x = U. A <-> ( x C_ U. A /\ U. A C_ x ) ) |
|
| 25 | eleq1 | |- ( x = U. A -> ( x e. A <-> U. A e. A ) ) |
|
| 26 | 25 | biimpcd | |- ( x e. A -> ( x = U. A -> U. A e. A ) ) |
| 27 | 24 26 | biimtrrid | |- ( x e. A -> ( ( x C_ U. A /\ U. A C_ x ) -> U. A e. A ) ) |
| 28 | 23 27 | mpand | |- ( x e. A -> ( U. A C_ x -> U. A e. A ) ) |
| 29 | 28 | rexlimiv | |- ( E. x e. A U. A C_ x -> U. A e. A ) |
| 30 | 22 29 | syl | |- ( ( A C_ On /\ A e. Fin /\ A =/= (/) ) -> U. A e. A ) |