This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order topology is T_1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtt1 | ⊢ ( 𝑅 ∈ PosetRel → ( ordTop ‘ 𝑅 ) ∈ Fre ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordttop | ⊢ ( 𝑅 ∈ PosetRel → ( ordTop ‘ 𝑅 ) ∈ Top ) | |
| 2 | snssi | ⊢ ( 𝑥 ∈ dom 𝑅 → { 𝑥 } ⊆ dom 𝑅 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) → { 𝑥 } ⊆ dom 𝑅 ) |
| 4 | sseqin2 | ⊢ ( { 𝑥 } ⊆ dom 𝑅 ↔ ( dom 𝑅 ∩ { 𝑥 } ) = { 𝑥 } ) | |
| 5 | 3 4 | sylib | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) → ( dom 𝑅 ∩ { 𝑥 } ) = { 𝑥 } ) |
| 6 | velsn | ⊢ ( 𝑦 ∈ { 𝑥 } ↔ 𝑦 = 𝑥 ) | |
| 7 | eqid | ⊢ dom 𝑅 = dom 𝑅 | |
| 8 | 7 | psref | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) → 𝑥 𝑅 𝑥 ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) → 𝑥 𝑅 𝑥 ) |
| 10 | 9 9 | jca | ⊢ ( ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) ) |
| 11 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 12 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) | |
| 13 | 11 12 | anbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑥 ∧ 𝑥 𝑅 𝑥 ) ) ) |
| 14 | 10 13 | syl5ibrcom | ⊢ ( ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑦 = 𝑥 → ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) |
| 15 | psasym | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) | |
| 16 | 15 | equcomd | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑦 = 𝑥 ) |
| 17 | 16 | 3expib | ⊢ ( 𝑅 ∈ PosetRel → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑦 = 𝑥 ) ) |
| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑦 = 𝑥 ) ) |
| 19 | 14 18 | impbid | ⊢ ( ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑦 = 𝑥 ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) |
| 20 | 6 19 | bitrid | ⊢ ( ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) ∧ 𝑦 ∈ dom 𝑅 ) → ( 𝑦 ∈ { 𝑥 } ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) |
| 21 | 20 | rabbi2dva | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) → ( dom 𝑅 ∩ { 𝑥 } ) = { 𝑦 ∈ dom 𝑅 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) } ) |
| 22 | 5 21 | eqtr3d | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) → { 𝑥 } = { 𝑦 ∈ dom 𝑅 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) } ) |
| 23 | 7 | ordtcld3 | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ∧ 𝑥 ∈ dom 𝑅 ) → { 𝑦 ∈ dom 𝑅 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |
| 24 | 23 | 3anidm23 | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) → { 𝑦 ∈ dom 𝑅 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |
| 25 | 22 24 | eqeltrd | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) → { 𝑥 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |
| 26 | 25 | ralrimiva | ⊢ ( 𝑅 ∈ PosetRel → ∀ 𝑥 ∈ dom 𝑅 { 𝑥 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |
| 27 | 7 | ordttopon | ⊢ ( 𝑅 ∈ PosetRel → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ dom 𝑅 ) ) |
| 28 | toponuni | ⊢ ( ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ dom 𝑅 ) → dom 𝑅 = ∪ ( ordTop ‘ 𝑅 ) ) | |
| 29 | 27 28 | syl | ⊢ ( 𝑅 ∈ PosetRel → dom 𝑅 = ∪ ( ordTop ‘ 𝑅 ) ) |
| 30 | 26 29 | raleqtrdv | ⊢ ( 𝑅 ∈ PosetRel → ∀ 𝑥 ∈ ∪ ( ordTop ‘ 𝑅 ) { 𝑥 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |
| 31 | eqid | ⊢ ∪ ( ordTop ‘ 𝑅 ) = ∪ ( ordTop ‘ 𝑅 ) | |
| 32 | 31 | ist1 | ⊢ ( ( ordTop ‘ 𝑅 ) ∈ Fre ↔ ( ( ordTop ‘ 𝑅 ) ∈ Top ∧ ∀ 𝑥 ∈ ∪ ( ordTop ‘ 𝑅 ) { 𝑥 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) ) |
| 33 | 1 30 32 | sylanbrc | ⊢ ( 𝑅 ∈ PosetRel → ( ordTop ‘ 𝑅 ) ∈ Fre ) |