This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order topology is T_1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtt1 | |- ( R e. PosetRel -> ( ordTop ` R ) e. Fre ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordttop | |- ( R e. PosetRel -> ( ordTop ` R ) e. Top ) |
|
| 2 | snssi | |- ( x e. dom R -> { x } C_ dom R ) |
|
| 3 | 2 | adantl | |- ( ( R e. PosetRel /\ x e. dom R ) -> { x } C_ dom R ) |
| 4 | sseqin2 | |- ( { x } C_ dom R <-> ( dom R i^i { x } ) = { x } ) |
|
| 5 | 3 4 | sylib | |- ( ( R e. PosetRel /\ x e. dom R ) -> ( dom R i^i { x } ) = { x } ) |
| 6 | velsn | |- ( y e. { x } <-> y = x ) |
|
| 7 | eqid | |- dom R = dom R |
|
| 8 | 7 | psref | |- ( ( R e. PosetRel /\ x e. dom R ) -> x R x ) |
| 9 | 8 | adantr | |- ( ( ( R e. PosetRel /\ x e. dom R ) /\ y e. dom R ) -> x R x ) |
| 10 | 9 9 | jca | |- ( ( ( R e. PosetRel /\ x e. dom R ) /\ y e. dom R ) -> ( x R x /\ x R x ) ) |
| 11 | breq2 | |- ( y = x -> ( x R y <-> x R x ) ) |
|
| 12 | breq1 | |- ( y = x -> ( y R x <-> x R x ) ) |
|
| 13 | 11 12 | anbi12d | |- ( y = x -> ( ( x R y /\ y R x ) <-> ( x R x /\ x R x ) ) ) |
| 14 | 10 13 | syl5ibrcom | |- ( ( ( R e. PosetRel /\ x e. dom R ) /\ y e. dom R ) -> ( y = x -> ( x R y /\ y R x ) ) ) |
| 15 | psasym | |- ( ( R e. PosetRel /\ x R y /\ y R x ) -> x = y ) |
|
| 16 | 15 | equcomd | |- ( ( R e. PosetRel /\ x R y /\ y R x ) -> y = x ) |
| 17 | 16 | 3expib | |- ( R e. PosetRel -> ( ( x R y /\ y R x ) -> y = x ) ) |
| 18 | 17 | ad2antrr | |- ( ( ( R e. PosetRel /\ x e. dom R ) /\ y e. dom R ) -> ( ( x R y /\ y R x ) -> y = x ) ) |
| 19 | 14 18 | impbid | |- ( ( ( R e. PosetRel /\ x e. dom R ) /\ y e. dom R ) -> ( y = x <-> ( x R y /\ y R x ) ) ) |
| 20 | 6 19 | bitrid | |- ( ( ( R e. PosetRel /\ x e. dom R ) /\ y e. dom R ) -> ( y e. { x } <-> ( x R y /\ y R x ) ) ) |
| 21 | 20 | rabbi2dva | |- ( ( R e. PosetRel /\ x e. dom R ) -> ( dom R i^i { x } ) = { y e. dom R | ( x R y /\ y R x ) } ) |
| 22 | 5 21 | eqtr3d | |- ( ( R e. PosetRel /\ x e. dom R ) -> { x } = { y e. dom R | ( x R y /\ y R x ) } ) |
| 23 | 7 | ordtcld3 | |- ( ( R e. PosetRel /\ x e. dom R /\ x e. dom R ) -> { y e. dom R | ( x R y /\ y R x ) } e. ( Clsd ` ( ordTop ` R ) ) ) |
| 24 | 23 | 3anidm23 | |- ( ( R e. PosetRel /\ x e. dom R ) -> { y e. dom R | ( x R y /\ y R x ) } e. ( Clsd ` ( ordTop ` R ) ) ) |
| 25 | 22 24 | eqeltrd | |- ( ( R e. PosetRel /\ x e. dom R ) -> { x } e. ( Clsd ` ( ordTop ` R ) ) ) |
| 26 | 25 | ralrimiva | |- ( R e. PosetRel -> A. x e. dom R { x } e. ( Clsd ` ( ordTop ` R ) ) ) |
| 27 | 7 | ordttopon | |- ( R e. PosetRel -> ( ordTop ` R ) e. ( TopOn ` dom R ) ) |
| 28 | toponuni | |- ( ( ordTop ` R ) e. ( TopOn ` dom R ) -> dom R = U. ( ordTop ` R ) ) |
|
| 29 | 27 28 | syl | |- ( R e. PosetRel -> dom R = U. ( ordTop ` R ) ) |
| 30 | 26 29 | raleqtrdv | |- ( R e. PosetRel -> A. x e. U. ( ordTop ` R ) { x } e. ( Clsd ` ( ordTop ` R ) ) ) |
| 31 | eqid | |- U. ( ordTop ` R ) = U. ( ordTop ` R ) |
|
| 32 | 31 | ist1 | |- ( ( ordTop ` R ) e. Fre <-> ( ( ordTop ` R ) e. Top /\ A. x e. U. ( ordTop ` R ) { x } e. ( Clsd ` ( ordTop ` R ) ) ) ) |
| 33 | 1 30 32 | sylanbrc | |- ( R e. PosetRel -> ( ordTop ` R ) e. Fre ) |