This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed interval [ A , B ] is closed. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ordttopon.3 | ⊢ 𝑋 = dom 𝑅 | |
| Assertion | ordtcld3 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ( 𝐴 𝑅 𝑥 ∧ 𝑥 𝑅 𝐵 ) } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordttopon.3 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | inrab | ⊢ ( { 𝑥 ∈ 𝑋 ∣ 𝐴 𝑅 𝑥 } ∩ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝐵 } ) = { 𝑥 ∈ 𝑋 ∣ ( 𝐴 𝑅 𝑥 ∧ 𝑥 𝑅 𝐵 ) } | |
| 3 | 1 | ordtcld2 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ 𝐴 𝑅 𝑥 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ 𝐴 𝑅 𝑥 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |
| 5 | 1 | ordtcld1 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝐵 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |
| 6 | incld | ⊢ ( ( { 𝑥 ∈ 𝑋 ∣ 𝐴 𝑅 𝑥 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ∧ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝐵 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) → ( { 𝑥 ∈ 𝑋 ∣ 𝐴 𝑅 𝑥 } ∩ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝐵 } ) ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) | |
| 7 | 4 5 6 | 3imp3i2an | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( { 𝑥 ∈ 𝑋 ∣ 𝐴 𝑅 𝑥 } ∩ { 𝑥 ∈ 𝑋 ∣ 𝑥 𝑅 𝐵 } ) ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |
| 8 | 2 7 | eqeltrrid | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ( 𝐴 𝑅 𝑥 ∧ 𝑥 𝑅 𝐵 ) } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) |