This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009) (Proof shortened by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordiso | |- ( ( A e. On /\ B e. On ) -> ( A = B <-> E. f f Isom _E , _E ( A , B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resiexg | |- ( A e. On -> ( _I |` A ) e. _V ) |
|
| 2 | isoid | |- ( _I |` A ) Isom _E , _E ( A , A ) |
|
| 3 | isoeq1 | |- ( f = ( _I |` A ) -> ( f Isom _E , _E ( A , A ) <-> ( _I |` A ) Isom _E , _E ( A , A ) ) ) |
|
| 4 | 3 | spcegv | |- ( ( _I |` A ) e. _V -> ( ( _I |` A ) Isom _E , _E ( A , A ) -> E. f f Isom _E , _E ( A , A ) ) ) |
| 5 | 1 2 4 | mpisyl | |- ( A e. On -> E. f f Isom _E , _E ( A , A ) ) |
| 6 | 5 | adantr | |- ( ( A e. On /\ B e. On ) -> E. f f Isom _E , _E ( A , A ) ) |
| 7 | isoeq5 | |- ( A = B -> ( f Isom _E , _E ( A , A ) <-> f Isom _E , _E ( A , B ) ) ) |
|
| 8 | 7 | exbidv | |- ( A = B -> ( E. f f Isom _E , _E ( A , A ) <-> E. f f Isom _E , _E ( A , B ) ) ) |
| 9 | 6 8 | syl5ibcom | |- ( ( A e. On /\ B e. On ) -> ( A = B -> E. f f Isom _E , _E ( A , B ) ) ) |
| 10 | eloni | |- ( A e. On -> Ord A ) |
|
| 11 | eloni | |- ( B e. On -> Ord B ) |
|
| 12 | ordiso2 | |- ( ( f Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A = B ) |
|
| 13 | 12 | 3coml | |- ( ( Ord A /\ Ord B /\ f Isom _E , _E ( A , B ) ) -> A = B ) |
| 14 | 13 | 3expia | |- ( ( Ord A /\ Ord B ) -> ( f Isom _E , _E ( A , B ) -> A = B ) ) |
| 15 | 10 11 14 | syl2an | |- ( ( A e. On /\ B e. On ) -> ( f Isom _E , _E ( A , B ) -> A = B ) ) |
| 16 | 15 | exlimdv | |- ( ( A e. On /\ B e. On ) -> ( E. f f Isom _E , _E ( A , B ) -> A = B ) ) |
| 17 | 9 16 | impbid | |- ( ( A e. On /\ B e. On ) -> ( A = B <-> E. f f Isom _E , _E ( A , B ) ) ) |