This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Identity law for isomorphism. Proposition 6.30(1) of TakeutiZaring p. 33. (Contributed by NM, 27-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isoid | ⊢ ( I ↾ 𝐴 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | ⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | |
| 2 | fvresi | ⊢ ( 𝑥 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑥 ) = 𝑥 ) | |
| 3 | fvresi | ⊢ ( 𝑦 ∈ 𝐴 → ( ( I ↾ 𝐴 ) ‘ 𝑦 ) = 𝑦 ) | |
| 4 | 2 3 | breqan12d | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ↔ 𝑥 𝑅 𝑦 ) ) |
| 5 | 4 | bicomd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) ) |
| 6 | 5 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) |
| 7 | df-isom | ⊢ ( ( I ↾ 𝐴 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) ↔ ( ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( ( I ↾ 𝐴 ) ‘ 𝑥 ) 𝑅 ( ( I ↾ 𝐴 ) ‘ 𝑦 ) ) ) ) | |
| 8 | 1 6 7 | mpbir2an | ⊢ ( I ↾ 𝐴 ) Isom 𝑅 , 𝑅 ( 𝐴 , 𝐴 ) |